Seed Coating with Fungicides and Various Treatments for Protection of Crops: A Review
Abstract
Application of chemical products, biological products or physical treatment over to the seeds before sowing so to suppress, control or keep away pathogens, insects and other pests that ruin the healthy seeds, seedlings, or plants. Seed treatment is a revolutionary technology for crop protection and management that grants many advantages to cultivators and represents one of the most efficient instruments in precision farming.
How to cite this article: Ahmed S, Kumar S. Seed Coating with Fungicides and Various Treatments for Protection of Crops: A Review. Int J Agric Env Sustain 2020; 2(1): 6-13.
References
Auld, D. L., Ditterline, R. L. and Mather, D. E. 1977. Screening sainfoin for resistance to root and crown rot caused by Fusarium solani (Mart.). Appel and Wr. Crop science, 17: 69–73. [Google Scholar]
Barbetti, M. J., Sivasithamparam, K. and Wong, D. H. 1987. Fungicidal drenches for control of root rot in subterranean clover. Plant and soil, 101: 151–157. [Google Scholar]
Bollen, G. J. and Fuchs, A. 1970. On the specificity of the in vitro and in vivo antifungal activity of benomyl. Netherlands journal of plant pathology, 76: 299–312. [Crossref], [Google Scholar]
Chen, B. S. 1992. Sainfoin, Lanzhou, , China: Gansu Science and Technology Press. (in Chinese) [Google Scholar]
Chidambaram, P., Mathur, S. B. and Neergaard, P. 1973. Identification of seed?borne Drechslera species. Friesia, 10: 165–207. [Google Scholar]
Christensen, M. J., Falloon, R. E. and Skipp, R. A. 1988. A petri plate technique for testing pathogenicity of fungi to seedlings and inducing fungal sporulation. Australasian plant pathology, 17: 45–47. [Crossref], [Google Scholar]
Dewan, M. M. and Sivasithamparam, K. 1988. Occurrence of species of Aspergillus and Penicillium in roots of wheat and ryegrass and their effect on root rot caused by Gaeumannomyces graminis var. tritici. Australian journal of botany, 36: 701–710. [Google Scholar]
Edgington, L. V., Khew, K. L. and Barren, G. L. 1971. Fungitoxic spectrum of benzimidazole compounds. Phytopathology, 61: 42–44. [Crossref], [Web of Science ®], [Google Scholar]
Falloon, R. E. Fungicide seed treatment to improve establishment of ryegrasses and other forage plants. Proceedings of the 34th New Zealand Weed and Pest Control Conference. pp.43–47. [Google Scholar]
Falloon, R. E. 1985. Fungi pathogenic to ryegrass seedlings. Plant and Soil, 86: 79–86. [Crossref], [Web of Science ®], [Google Scholar]
Falloon, R. E. and Skipp, R. A. Fungicide seed treatments improve lucerne establishment. Proceedings of the 35 th New Zealand Weed and Pest control Conference. pp.127–129. [Google Scholar]
Fuchs, A., van den Berg, G. A. and Davidse, L. C. 1972. A comparison of benomyl and thiophanate?methyl with respect to some chemical and systemic fungitoxic characteristics. Pesticide biochemistry and physiology, 2: 191–205. [Google Scholar]
Leath, K. T., Zeiders, K. E. and Byers, R. A. 1973. Increased yield and persistence of red clover after a soil drench application of benomyl. Agronomy journal, 65: 1008–1009. [Google Scholar]
Liang, Y. F., Liu, R., Xue, F. X., Zhu, L., Li, Q. W., Yang, Z. X., Cai, L. and Tian, X. W. 1989. Pathogenic fungi carried by sainfoin seeds in Gansu Province. Pratacultural science, 6: 5–9. (in Chinese) [Google Scholar]
Liu, R. and Ho, T. J. 1984. Preliminary list of fungal disease of forage legumes in northern China. Grassland of China, 1: 56–60. (in Chinese) [Google Scholar]
Nan, Z. B. 1990. Fungal diseases of cultivated grasses and forage legumes in Loess Plateau of eastern Gansu Province. Pratacultural science, 7: 30–34. (in Chinese) [Google Scholar]
Nan, Z. B., Long, P. G. and Skipp, R. A. 1991a. Effect of several root pathogenic fungi on growth of red clover under field conditions. New Zealand journal of agricultural research, 34: 263–269. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
Nan, Z. B., Skipp, R. A. and Long, P. G. 1991b. Use of fungicides to assess the effects of root disease: effects of prochloraz on red clover and microbial populations in soil and roots. Soil biology and biochemistry, 23: 743–750. [Google Scholar]
Nan, Z. B., Skipp, R. A. and Long, P. G. 1991c. Fungal invasion of red clover roots in a soil naturally infested with a complex of pathogens: effects of soil temperature and moisture content. Soil biology and biochemistry, 23: 415–421. [Crossref], [Web of Science ®], [Google Scholar]
Nan, Z. B., Long, P. G. and Skipp, R. A. 1992. Use of prochloraz and benomyl drenches to assess the effects of fungal root pathogens on growth of red clover under field conditions. Australasian plant pathology, 21: 98–103. [Google Scholar]
Nan, Z. B., Liu, Z. H. and Skipp, R. A. Effects of fungicide seed treatments on germination and establishment of sainfoin and other legumes. Proceedings of the XVII International Grassland Congress. pp.941–942. [Google Scholar]
Papavizas, G. C. and Lewis, J. A. 1975. Effect of seed treatment with fungicides on bean root rots. Plant disease reporter, 59: 24–31. [Google Scholar]
Sears, R. G., Ditterline, R. L. and Mather, D. E. 1975. Crown and root rotting organisms affecting sainfoin (Onobrychis viciifolia) in Montana. Plant disease reporter, 59: 423–426. [Google Scholar]
Skipp, R. A. and Watson, R. N. 1987. Pot experiments with pasture soils to detect soilborne pathogens of white clover and lucerne and effects of field application of fungicides. New Zealand journal of agricultural research, 30: 85–93. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
Wu, Z. L. and Wang, X. Study on productivity of sainfoin pasture on the Loess Plateau in China (in Chinese). Proceedings of International Conference on Farming Systems on the Loess Plateau of China. Edited by: Ren, J. Z. pp.227–231. Lanzhou, , China: Gansu Science and Technology Press. [Google Scholar]
Abdel-Hady, M. S., Okasha, E. M., Soliman, S. S. A., and Talaat, M. (2008). Effect of gamma radiation and gibberellic acid on germination and alkaloid production in Atropa belladonna L. Aust. J. Basic Appl. Sci. 2, 401–405.
Google Scholar
Afzal, I., Mukhtar, K., Qasim, M., Basra, S. M. A., Shahid, M., and Haq, Z. (2012). Magnetic stimulation of marigold seed. Int. Agrophys. 26, 335–339. doi: 10.2478/v10247-012-0047-1
CrossRef Full Text | Google Scholar
Aladjadjiyan, A. (2010). Effect of microwave irradiation on seeds of lentils (Lens Culinaris, Med.). Rom. J. Biophys. 20, 213–221.
Google Scholar
Al-Enezi, N., Al-Bahrany, A., and Al-Khayri, J. (2012). Effect of X-irradiation on date palm seed germination and seedling growth. Emirates J. Food Agric. 24, 415–424.
Google Scholar
Arena, C., De Micco, V., Macaeva, E., and Quintens, R. (2014). Space radiation effects on plant and mammalian cells. Acta Astronaut. 104, 419–431. doi: 10.1016/j.actaastro.2014.05.005
Google Scholar
Balestrazzi, A., Confalonieri, M., Macovei, A., and Carbonera, D. (2011). Seed imbibition in Medicago truncatula Gaertn: expression profiles of DNA repair genes in relation to PEG-mediated stress. J. Plant Physiol. 168, 706–713. doi: 10.1016/j.jplph.2010.10.008
PubMed Abstract | CrossRef Full Text | Google Scholar
Banik, S., Bandyopadhyay, S., and Ganguly, S. (2003). Bioeffects of microwave–a brief review. Bioresour. Technol. 87, 155–159. doi: 10.1016/S0960-8524(02)00169-4
CrossRef Full Text | Google Scholar
Beard, B. H., Haskins, F. A., and Gardner, C. O. (1958). Comparison of effects of X-rays and thermal neutrons on dormant seeds of barley, maize, mustard, and sa?ower. Genetics 43, 728–736.
Google Scholar
Belz, R. G., and Piepho, H.-P. (2012). Modeling effective dosages in hormetic dose-response studies. PLoS ONE 7:e33432. doi: 10.1371/journal.pone.0033432
PubMed Abstract | CrossRef Full Text | Google Scholar
Benedict, H. M., and Kersten, H. (1934). Effect of soft X-rays on germination of wheat seeds. Plant Physiol. 9, 173–178. doi: 10.1104/pp.9.1.173
PubMed Abstract | CrossRef Full Text | Google Scholar
Bless, A. A. (1938). Effects of X-rays on seeds. Plant Physiol. 13, 209–211. doi: 10.1104/pp.13.1.209
CrossRef Full Text | Google Scholar
Borzouei, A., Naseriyan, B., Majdabadi, A., Kafi, M., and Khazaei, H. (2010). Effects of gamma radiation on germination and physiological aspects of wheat (Triticum aestivum L.) seedlings. Pakistan J. Bot. 42, 2281–2290.
Google Scholar
Buitink, J., Hemminga, M. A., and Hoekstra, F. A. (1999). Characterization of molecular mobility in seed tissues: an electron paramagnetic resonance spin probe study. Biophys. J. 76, 3315–3322. doi: 10.1016/S0006-3495(99)77484-9
PubMed Abstract | CrossRef Full Text | Google Scholar
Confalonieri, M., Faè, M., Balestrazzi, A., Donà, M., Macovei, A., Valassi, A., et al. (2014). Enhanced osmotic stress tolerance in Medicago truncatula plants overexpressing the DNA repair gene MtTdp2? (tyrosyl-DNA phosphodiesterase 2). Plant Cell Tissue Organ. Cult. 116, 187–203. doi: 10.1007/s11240-013-0395-y
CrossRef Full Text | Google Scholar
Dubey, A. K., Yadav, J. R., and Singh, B. (2007). Studies on induced mutations by gamma irradiation in okra (Abelmoschus esculentus (L.) Monch.). Progress. Agric. 7, 46–48.
Google Scholar
Esnault, M.-A., Legue, F., and Chenal, C. (2010). Ionizing radiation: advances in plant response. Environ. Exp. Bot. 68, 231–237. doi: 10.1016/j.envexpbot.2010.01.007
CrossRef Full Text | Google Scholar
Farokh, P., Mahmoodzadeh, H., and Satari, T. (2010). Response of seed germination of sa?ower to UV-B radiation. Res. J. Environ. Sci. 4, 70–74. doi: 10.3923/rjes.2010.70.74
CrossRef Full Text | Google Scholar
Hamid, N., and Jawaid, F. (2011). Influence of seed pre-treatment by UV-A and UV-C radiation on germination and growth of Mung beans. Pakistan J. Chem. 1, 164–167. doi: 10.15228/2011.v01.i04.p04
CrossRef Full Text | Google Scholar
Hollósy, F. (2002). Effects of ultraviolet radiation on plant cells. Micron 33, 179–197. doi: 10.1016/S0968-4328(01)00011-7
CrossRef Full Text | Google Scholar
Hussain, S., Zheng, M., Khan, F., Khaliq, A., Fahad, S., Peng, S., et al. (2015). Benefits of rice seed priming are offset permanently by prolonged storage and the storage conditions. Sci. Rep. 5:8101. doi: 10.1038/srep08101
PubMed Abstract | CrossRef Full Text | Google Scholar
Irfaq, M., and Nawab, K. (2001). Effect of gamma irradiation on some morphological characteristics of three wheat (Triticum aestivum L.) cultivars. J. Biol. Sci. 1, 935–937. doi: 10.3923/jbs.2001.935.937
CrossRef Full Text | Google Scholar
Javed, N., Ashraf, M., Akram, N. A., and Al-Qurainy, F. (2011). Alleviation of adverse effects of drought stress on growth and some potential physiological attributes in maize (Zea mays L.) by seed electromagnetic treatment. Photochem. Photobiol. 87, 1354–1362. doi: 10.1111/j.1751-1097.2011.00990.x
PubMed Abstract | CrossRef Full Text | Google Scholar
Knox, O. G. G., McHugh, M. J., Fountaine, J. M., and Havis, N. D. (2013). Effects of microwaves on fungal pathogens of wheat seed. Crop Prot. 50, 12–16. doi: 10.1016/j.cropro.2013.03.009
CrossRef Full Text | Google Scholar
Krylov, A., and Tarakanova, G. A. (1960). Magnetotropism of plants and its nature. Plant Phys. 7, 156–160.
Google Scholar
Luckey, T. D. (1980). Hormesis with Ionizing Radiation. Boca Raton: CRC press.
Google Scholar
Mokobia, C. E., and Anomohanran, O. (2005). The effect of gamma irradiation on the germination and growth of certain Nigerian agricultural crops. J. Radiol. Prot. 25, 181–188. doi: 10.1088/0952-4746/25/2/006
PubMed Abstract | CrossRef Full Text | Google Scholar
Moussa, H. R. (2006). Role of gamma irradiation in regulation of NO3 level in rocket (Eruca vesicaria subsp. sativa) plants. Russ. J. Plant Physiol. 53, 193–197. doi: 10.1134/S1021443706020075
CrossRef Full Text | Google Scholar
Pérez-Torres, E., Kirchgessner, N., Pfeifer, J., and Walter, A. (2015). Assessing potato tuber diel growth by means of X-ray computed tomography. Plant Cell Environ. 38, 2318–2326. doi: 10.1111/pce.12548
PubMed Abstract | CrossRef Full Text | Google Scholar