

Review Article

Developments in Food Enzyme Technology: Uses, Novelties, and Prospects

<u>Jagriti Tiwari</u>

Assistant lecture, Department of Botany, PMMV, Amra Khairachak, Varanasi, India.

INFO

E-mail Id:

tiwarijagriti1095@gmail.com

Orcid Id:

https://orcid.org/0009-0008-7535-7676

How to cite this article:

Tiwari J. Developments in Food Enzyme Technology: Uses, Novelties, and Prospects. *J Adv Res Food Sci Nutr* 2024; 7(1): 17-24.

Date of Submission: 2024-04-12 Date of Acceptance: 2024-06-01

ABSTRACT

Food enzyme technology is a rapidly evolving field that leverages biological catalysts to enhance food processing, improve nutritional quality, and develop novel food products. This review article explores the latest advancements in food enzyme technology, focusing on their applications in various food industries, innovations driving the field, and potential future directions. The article provides a comprehensive overview of the role of enzymes in food processing, the benefits of enzyme application, recent technological innovations, and the challenges and opportunities for future research and development.

Keywords: Food Enzyme Technology, Enzyme Immobilization, Genetic Engineering of Enzymes, Sustainable Food Processing, Enzyme-Assisted Extraction

Introduction

Enzymes are biological catalysts that accelerate biochemical reactions, playing a crucial role in various metabolic processes. These protein molecules, produced by living organisms, are highly specific in their action, catalyzing only particular reactions without being consumed in the process. In the food industry, enzymes have been utilized for centuries in traditional practices such as brewing, cheese making, and baking. Their natural occurrence and ability to enhance various food processing methods have made them indispensable tools in the production of a wide array of food products.

Modern food enzyme technology has expanded the scope of enzyme applications beyond traditional uses, leading to significant improvements in food quality, safety, and production efficiency. This expansion is driven by advances in biotechnology, which have enabled the development of enzymes with enhanced properties, such as increased stability, specificity, and activity under a broader range of conditions. These advancements have allowed the food industry to address contemporary challenges, including the demand for healthier food options, sustainable production

practices, and the need for efficient processing methods to meet the growing global food demand.

Enzymes offer numerous advantages over traditional chemical processes used in food production. They operate under milder conditions, such as lower temperatures and neutral pH, reducing energy consumption and minimizing the formation of undesirable by-products. Additionally, enzymes are biodegradable and often sourced from renewable resources, making them environmentally friendly alternatives to synthetic chemicals. Their specificity also ensures that they target only the desired reactions, reducing the risk of off-flavors and unwanted changes in food quality.

The application of enzymes in food technology encompasses various sectors, including baking, dairy, beverages, meat processing, and oil and fat processing. Each sector benefits from the unique capabilities of specific enzymes, leading to enhanced product characteristics, improved process efficiency, and the development of innovative food products. For instance, enzymes can improve dough handling in baking, enhance cheese texture in dairy production, and increase juice yield in beverage processing.^{1, 2}

Journal of Advanced Research in Food Science and Nutrition (ISSN: 2582-3892) Copyright (c) 2024: Author(s). Published by Advanced Research Publications

Key Applications of Enzymes in Food Technology

Enzymes have revolutionized food processing by improving efficiency, enhancing product quality, and enabling the development of new food products. Their specific catalytic actions are harnessed across various sectors within the food industry, each benefiting from unique enzyme functions. Below are some of the key applications of enzymes in food technology.

Baking Industry

Enzymes such as amylases, proteases, and lipases play a crucial role in the baking industry, enhancing dough properties and the quality of baked goods.

- Amylases: These enzymes break down starches into simpler sugars, which yeast can ferment more easily.
 This process improves dough handling, volume, and crumb texture.
- Proteases: By breaking down gluten proteins, proteases improve dough elasticity and extensibility, making it easier to shape and handle.
- **Lipases:** These enzymes enhance dough stability and improve the crumb structure, leading to a softer and more desirable texture in baked products.

Dairy Industry

Enzymes are indispensable in the dairy industry, aiding in cheese production, lactose removal, and flavor enhancement.

- Rennet (Chymosin): Used to coagulate milk, rennet is essential in cheese making. It separates milk into curds and whey, forming the basis of cheese.
- Lactase: This enzyme breaks down lactose into glucose and galactose, allowing for the production of lactosefree dairy products suitable for lactose-intolerant individuals.
- Proteases and Lipases: These enzymes contribute to the development of specific cheese flavors and textures by breaking down proteins and fats during aging.

Beverage Industry

Enzymes play a vital role in the beverage industry, particularly in brewing and juice production.

- Brewing: Enzymes such as amylases, glucanases, and proteases are used to break down starches, clarify proteins, and enhance flavors in beer production.
- Juice Processing: Pectinases break down pectin, a structural polysaccharide in fruit cell walls, increasing juice yield and clarity. This is crucial for producing high-quality, clear fruit juices.

Meat Processing

Proteases and transglutaminases are key enzymes used in meat processing to improve texture and product quality.

- **Proteases:** These enzymes tenderize meat by breaking down muscle proteins, resulting in a softer texture.
- Transglutaminases: Often referred to as "meat glue," these enzymes bond proteins together, improving the texture and consistency of processed meat products, such as sausages and surimi.

Oil and Fat Processing

Lipases are extensively used in the modification and processing of fats and oils.

- Interesterification: Lipases catalyze the rearrangement of fatty acids on glycerol molecules, producing fats with improved functional properties, such as spreadability and melting behavior. This process is essential for creating trans-fat-free products.
- Degumming and Refining: Enzymes assist in removing impurities from crude oils, improving the quality and stability of the final product.

Fruit and Vegetable Processing

Enzymes enhance the processing of fruits and vegetables by improving texture, color, and nutrient availability.

- Pectinases and Cellulases: These enzymes break down cell walls, aiding in the extraction of juices and purees, improving clarity and yield.
- Polyphenol Oxidases (PPOs): Used in the controlled browning of certain products, these enzymes enhance the color and flavor of products like tea and coffee.

Starch and Sugar Processing

Enzymes are crucial in converting starches into various sugars and syrups.

- Amylases and Glucoamylases: These enzymes break down starch into glucose and maltose, which are then used in sweeteners and syrups.
- Invertases: These enzymes convert sucrose into glucose and fructose, producing invert sugar syrups used in confections and beverages.³⁻⁶

Dietary Supplements and Functional Foods

Enzymes are used to enhance the nutritional value and functionality of food products.

- Probiotics and Prebiotics: Enzymes assist in the production of probiotic and prebiotic products, promoting gut health.
- Digestive Enzymes: These supplements aid in the digestion of proteins, fats, and carbohydrates, improving nutrient absorption and digestive health.

Brewing and Fermentation

Enzymes facilitate various fermentation processes, enhancing the efficiency and quality of the final products.

- Amylases: Used in brewing to break down complex carbohydrates into fermentable sugars, improving the alcohol content and flavor of beer and spirits.
- Proteases and Glucanases: Enhance yeast health and fermentation efficiency by breaking down proteins and glucans that can inhibit yeast performance.

Confectionery Industry

Enzymes improve the quality and shelf-life of confectionery products.

- **Invertases:** Convert sucrose into invert sugar, which prevents crystallization and maintains a smooth texture in products like fondants and creams.
- Amylases: Used in the production of high-fructose corn syrup, an important sweetener in many confectionery products.

Innovations in Food Enzyme Technology

The field of food enzyme technology has witnessed significant advancements driven by innovations in biotechnology, biochemistry, and engineering. These innovations have not only enhanced the efficiency and specificity of enzyme applications but have also opened new avenues for sustainable and high-quality food production. Here are some of the key innovations shaping the future of food enzyme technology:

Genetic Engineering and Recombinant DNA Technology

Advancements in genetic engineering have revolutionized the production and optimization of food enzymes. Through recombinant DNA technology, specific genes encoding desired enzymes can be inserted into microbial hosts such as bacteria, yeast, or fungi. This enables the large-scale production of enzymes with tailored properties, including enhanced activity, stability, and reduced allergenicity.

- Tailored Enzymes: Genetic engineering allows for the creation of enzymes with specific characteristics suited for particular food processes. For instance, enzymes can be modified to function optimally at high temperatures or extreme pH levels, expanding their usability in various industrial applications.
- High Yield Production: Recombinant DNA technology facilitates the production of enzymes in higher yields compared to traditional extraction methods from natural sources, making the process more cost-effective and sustainable.

Immobilized Enzymes

The immobilization of enzymes involves attaching them to solid supports such as beads, membranes, or nanoparticles. Immobilized enzymes offer several advantages over their free counterparts, including enhanced stability, reusability, and ease of separation from reaction mixtures.⁷⁻¹⁰

- Improved Stability: Immobilized enzymes often exhibit greater thermal and operational stability, allowing them to maintain activity over longer periods and under harsher conditions.
- Cost-Effectiveness: The ability to reuse immobilized enzymes multiple times reduces the overall cost of enzymatic processes, making them more economically viable for industrial applications.
- Ease of Separation: Immobilized enzymes can be easily separated from reaction mixtures, simplifying product purification and minimizing contamination.

Enzyme Engineering

Enzyme engineering involves the modification of enzyme structures to improve their performance. Techniques such as directed evolution and rational design are employed to enhance enzyme properties, including substrate specificity, catalytic efficiency, and stability.

- **Directed Evolution:** This technique mimics natural selection by creating a large library of enzyme variants and screening for those with desirable traits. Iterative rounds of mutation and selection lead to the evolution of enzymes with enhanced properties.
- Rational Design: Based on the understanding of enzyme structure and function, rational design involves the deliberate modification of specific amino acids in an enzyme to achieve desired characteristics. Computational tools and modeling play a crucial role in predicting the effects of these modifications.

Novel Enzyme Sources

Exploring novel enzyme sources from extremophiles (organisms that thrive in extreme environments) and other unique ecosystems has led to the discovery of enzymes with remarkable properties.

- Extremophiles: Enzymes derived from extremophiles, such as thermophiles and halophiles, often exhibit extraordinary stability and activity under extreme conditions like high temperatures, extreme pH, and high salinity. These enzymes are particularly valuable for industrial processes that operate under harsh conditions.
- Metagenomics: The study of genetic material recovered directly from environmental samples, known as metagenomics, has expanded the discovery of novel enzymes. This approach allows researchers to access the vast diversity of unculturable microorganisms, uncovering new enzymes with unique functionalities.

Protein Engineering and Synthetic Biology

Protein engineering and synthetic biology have enabled the design and synthesis of entirely new enzymes with customized functions.

- De Novo Enzyme Design: Advances in protein modeling and computational design allow for the creation of new enzymes from scratch. These de novo enzymes can be tailored for specific applications, offering unprecedented control over their properties and functions.
- Synthetic Biology: This interdisciplinary field combines biology, engineering, and computational sciences to design and construct new biological parts, devices, and systems. Synthetic biology approaches can be used to create synthetic pathways and microbial factories that produce complex enzymes and bioactive compounds.

Nanotechnology

Nanotechnology has introduced innovative methods for enzyme immobilization and stabilization, enhancing their functionality and application scope.

- Nanocarriers: Enzymes can be immobilized on nanocarriers such as nanoparticles, nanotubes, and nanofibers. These nanocarriers offer a high surface area for enzyme attachment, improving catalytic efficiency and stability.
- Nanoconfinement: Encapsulating enzymes within nanoscale environments can protect them from denaturation and degradation, maintaining their activity over extended periods.

Enzyme-Assisted Extraction

Enzyme-assisted extraction (EAE) utilizes specific enzymes to break down cell walls and release valuable intracellular compounds, such as bioactive peptides, oils, and flavors, from plant and animal tissues.

- Enhanced Yield and Purity: EAE improves the extraction yield and purity of target compounds by efficiently breaking down cellular structures and reducing the need for harsh chemical solvents.
- Sustainable Processes: Enzyme-assisted extraction is considered more environmentally friendly compared to traditional extraction methods, as it reduces energy consumption and minimizes the use of harmful chemicals.

Biocatalysis in Food Processing

The use of enzymes as biocatalysts in food processing offers precise control over reaction conditions and product outcomes.

- Selective Catalysis: Enzymes provide high selectivity, enabling the production of specific compounds without unwanted by-products. This is particularly useful in the synthesis of flavors, fragrances, and nutraceuticals.
- Mild Reaction Conditions: Enzymatic reactions typically occur under mild conditions, such as ambient temperature and neutral pH, preserving the nutritional and sensory qualities of food products.

High-Throughput Screening and Automation

High-throughput screening (HTS) and automation technologies have accelerated the discovery and optimization of enzymes for food applications.

- Rapid Screening: HTS allows for the rapid screening of large libraries of enzyme variants, identifying those with the best performance characteristics in a fraction of the time required by traditional methods.
- Automated Systems: Automation in enzyme production and application processes increases efficiency, consistency, and scalability, reducing human error and operational costs.

Computational Tools and Bioinformatics

The integration of computational tools and bioinformatics has transformed enzyme research and development.

- Enzyme Databases: Comprehensive databases cataloging enzyme sequences, structures, and functions facilitate the identification and characterization of new enzymes.
- Molecular Modeling: Computational modeling and simulations help predict enzyme behavior, guiding the design and optimization of enzymes with enhanced properties.

Future Directions and Challenges

The field of food enzyme technology has witnessed significant advancements driven by innovations in biotechnology, biochemistry, and engineering. These innovations have not only enhanced the efficiency and specificity of enzyme applications but have also opened new avenues for sustainable and high-quality food production. Here are some of the key innovations shaping the future of food enzyme technology:

Genetic Engineering and Recombinant DNA Technology

Advancements in genetic engineering have revolutionized the production and optimization of food enzymes. Through recombinant DNA technology, specific genes encoding desired enzymes can be inserted into microbial hosts such as bacteria, yeast, or fungi. This enables the large-scale production of enzymes with tailored properties, including enhanced activity, stability, and reduced allergenicity.

- Tailored Enzymes: Genetic engineering allows for the creation of enzymes with specific characteristics suited for particular food processes. For instance, enzymes can be modified to function optimally at high temperatures or extreme pH levels, expanding their usability in various industrial applications.
- High Yield Production: Recombinant DNA technology facilitates the production of enzymes in higher yields

compared to traditional extraction methods from natural sources, making the process more cost-effective and sustainable.

Immobilized Enzymes

The immobilization of enzymes involves attaching them to solid supports such as beads, membranes, or nanoparticles. Immobilized enzymes offer several advantages over their free counterparts, including enhanced stability, reusability, and ease of separation from reaction mixtures.

- Improved Stability: Immobilized enzymes often exhibit greater thermal and operational stability, allowing them to maintain activity over longer periods and under harsher conditions.
- Cost-Effectiveness: The ability to reuse immobilized enzymes multiple times reduces the overall cost of enzymatic processes, making them more economically viable for industrial applications.
- Ease of Separation: Immobilized enzymes can be easily separated from reaction mixtures, simplifying product purification and minimizing contamination.

Enzyme Engineering

Enzyme engineering involves the modification of enzyme structures to improve their performance. Techniques such as directed evolution and rational design are employed to enhance enzyme properties, including substrate specificity, catalytic efficiency, and stability.

- Directed Evolution: This technique mimics natural selection by creating a large library of enzyme variants and screening for those with desirable traits. Iterative rounds of mutation and selection lead to the evolution of enzymes with enhanced properties.
- Rational Design: Based on the understanding of enzyme structure and function, rational design involves the deliberate modification of specific amino acids in an enzyme to achieve desired characteristics. Computational tools and modeling play a crucial role in predicting the effects of these modifications.

Novel Enzyme Sources

Exploring novel enzyme sources from extremophiles (organisms that thrive in extreme environments) and other unique ecosystems has led to the discovery of enzymes with remarkable properties.

- Extremophiles: Enzymes derived from extremophiles, such as thermophiles and halophiles, often exhibit extraordinary stability and activity under extreme conditions like high temperatures, extreme pH, and high salinity. These enzymes are particularly valuable for industrial processes that operate under harsh conditions.
- Metagenomics: The study of genetic material recovered directly from environmental samples, known

as metagenomics, has expanded the discovery of novel enzymes. This approach allows researchers to access the vast diversity of unculturable microorganisms, uncovering new enzymes with unique functionalities.

Protein Engineering and Synthetic Biology

Protein engineering and synthetic biology have enabled the design and synthesis of entirely new enzymes with customized functions.

- De Novo Enzyme Design: Advances in protein modeling and computational design allow for the creation of new enzymes from scratch. These de novo enzymes can be tailored for specific applications, offering unprecedented control over their properties and functions
- Synthetic Biology: This interdisciplinary field combines biology, engineering, and computational sciences to design and construct new biological parts, devices, and systems. Synthetic biology approaches can be used to create synthetic pathways and microbial factories that produce complex enzymes and bioactive compounds.

Nanotechnology

Nanotechnology has introduced innovative methods for enzyme immobilization and stabilization, enhancing their functionality and application scope.

- Nanocarriers: Enzymes can be immobilized on nanocarriers such as nanoparticles, nanotubes, and nanofibers. These nanocarriers offer a high surface area for enzyme attachment, improving catalytic efficiency and stability.
- Nanoconfinement: Encapsulating enzymes within nanoscale environments can protect them from denaturation and degradation, maintaining their activity over extended periods.

Enzyme-Assisted Extraction

Enzyme-assisted extraction (EAE) utilizes specific enzymes to break down cell walls and release valuable intracellular compounds, such as bioactive peptides, oils, and flavors, from plant and animal tissues.

- Enhanced Yield and Purity: EAE improves the extraction yield and purity of target compounds by efficiently breaking down cellular structures and reducing the need for harsh chemical solvents.
- Sustainable Processes: Enzyme-assisted extraction is considered more environmentally friendly compared to traditional extraction methods, as it reduces energy consumption and minimizes the use of harmful chemicals.

Biocatalysis in Food Processing

The use of enzymes as biocatalysts in food processing offers precise control over reaction conditions and product outcomes.

- Selective Catalysis: Enzymes provide high selectivity, enabling the production of specific compounds without unwanted by-products. This is particularly useful in the synthesis of flavors, fragrances, and nutraceuticals.
- Mild Reaction Conditions: Enzymatic reactions typically occur under mild conditions, such as ambient temperature and neutral pH, preserving the nutritional and sensory qualities of food products.

High-Throughput Screening and Automation

High-throughput screening (HTS) and automation technologies have accelerated the discovery and optimization of enzymes for food applications.

- Rapid Screening: HTS allows for the rapid screening of large libraries of enzyme variants, identifying those with the best performance characteristics in a fraction of the time required by traditional methods.
- Automated Systems: Automation in enzyme production and application processes increases efficiency, consistency, and scalability, reducing human error and operational costs.

Computational Tools and Bioinformatics

The integration of computational tools and bioinformatics has transformed enzyme research and development.

- Enzyme Databases: Comprehensive databases cataloging enzyme sequences, structures, and functions facilitate the identification and characterization of new enzymes.
- Molecular Modeling: Computational modeling and simulations help predict enzyme behavior, guiding the design and optimization of enzymes with enhanced properties.

In conclusion, innovations in food enzyme technology are driving the industry towards more efficient, sustainable, and versatile processes. The ongoing advancements in genetic engineering, enzyme immobilization, protein engineering, and other cutting-edge technologies are poised to further revolutionize food production, ensuring the development of high-quality, safe, and innovative food products.

Future Directions and Challenges

As food enzyme technology continues to evolve, it faces several opportunities and challenges that will shape its future. Addressing these challenges and leveraging emerging opportunities will be critical for advancing the field and enhancing its impact on the food industry.

Future Directions

Sustainable Production and Green Chemistry

The food industry is increasingly focused on sustainability and reducing its environmental footprint. Enzyme

technology can play a key role in promoting green chemistry practices.

- Biodegradable Enzymes: Developing enzymes that are fully biodegradable will help reduce environmental impact and support sustainable food processing practices.
- Renewable Resources: Using renewable resources for enzyme production, such as agricultural by-products and waste materials, can enhance sustainability and reduce reliance on non-renewable raw materials.
- Energy Efficiency: Enzymes that operate under mild conditions can reduce energy consumption in food processing, contributing to more energy-efficient and sustainable production methods.

Personalized Nutrition and Health

Enzyme technology can be instrumental in the development of personalized nutrition and health products tailored to individual needs.

- Tailored Enzymes for Functional Foods: Enzymes can be designed to produce specific bioactive compounds, enhancing the nutritional value and health benefits of functional foods.
- Digestive Health: Enzyme-based supplements and food products that aid digestion and improve nutrient absorption can be developed to address individual dietary needs and health conditions.

Integration with Emerging Technologies

The integration of enzyme technology with emerging fields such as synthetic biology, nanotechnology, and bioinformatics holds great promise for developing innovative food products and processes.

- Synthetic Biology: By combining enzyme technology with synthetic biology, researchers can create novel metabolic pathways and microbial factories for producing complex enzymes and bioactive compounds.
- Nanotechnology: Nanotechnology can enhance enzyme immobilization and stabilization, expanding their application scope and efficiency in food processing.
- Bioinformatics: Computational tools and bioinformatics can accelerate enzyme discovery and optimization, enabling the design of enzymes with improved properties and functionalities.

Enhancing Food Safety and Quality

Enzymes can contribute to improving food safety and quality by enhancing food preservation, reducing spoilage, and ensuring consistent product quality.

 Natural Preservatives: Enzymes can be used to produce natural preservatives that inhibit microbial growth and extend the shelf life of food products without the need for synthetic additives. Quality Control: Enzyme-based assays and sensors can be developed for real-time monitoring of food quality and safety, ensuring compliance with regulatory standards and consumer expectations.

Expanding Application Areas

Future research should focus on expanding the application areas of enzyme technology beyond traditional sectors, exploring new opportunities in various segments of the food industry.

- Alternative Proteins: Enzymes can play a role in the production and processing of alternative proteins, such as plant-based and cultured meat products, enhancing their texture, flavor, and nutritional profile.
- Food Waste Valorization: Enzymes can be used to convert food waste into valuable products, such as biofuels, bioactive compounds, and animal feed, contributing to waste reduction and resource efficiency.

Challenges

Regulatory and Safety Considerations

Ensuring the safety and regulatory compliance of enzyme applications is crucial for consumer acceptance and market success.

- Allergenicity and Toxicity: Comprehensive testing and evaluation are necessary to address potential allergenicity and toxicity concerns associated with new enzyme applications.
- Regulatory Approval: Navigating complex regulatory frameworks and obtaining approval for novel enzyme products can be time-consuming and costly, requiring collaboration between industry stakeholders and regulatory authorities.

Consumer Acceptance and Education

Gaining consumer acceptance for enzyme-based food products is essential for their successful commercialization.

- Consumer Perception: Addressing misconceptions and educating consumers about the benefits and safety of enzyme technology is vital for fostering acceptance and trust.
- Transparency: Providing transparent information about the use of enzymes in food processing, including their sources and benefits, can help build consumer confidence and acceptance.

Technical and Economic Challenges

Overcoming technical and economic challenges is critical for the widespread adoption and commercialization of enzyme technology.

 Production Costs: Reducing the production costs of enzymes, including raw materials, fermentation, and

- purification processes, is essential for making enzymebased solutions economically viable.
- Stability and Shelf Life: Enhancing the stability and shelf life of enzymes, especially in challenging processing conditions, is crucial for their effective application in the food industry.

Ethical and Environmental Concerns

Addressing ethical and environmental concerns related to enzyme technology is important for sustainable and responsible innovation.

- Genetic Modification: Ethical considerations related to the use of genetically modified organisms (GMOs) for enzyme production must be addressed, balancing innovation with consumer concerns and regulatory requirements.
- Environmental Impact: Ensuring that enzyme production and application processes have minimal environmental impact, including waste management and resource utilization, is essential for sustainable development.

Interdisciplinary Collaboration

Fostering interdisciplinary collaboration is key to advancing enzyme technology and overcoming its challenges.

- Research and Development: Collaboration between biochemists, molecular biologists, engineers, and food scientists can drive innovation and address technical challenges in enzyme technology.
- Industry Partnerships: Partnerships between academia, industry, and regulatory bodies can facilitate the translation of research findings into practical applications and market-ready products. 11-14

Conclusion

Food enzyme technology has made significant strides in improving food processing, enhancing product quality, and enabling the development of novel food products. The advancements in genetic engineering, enzyme immobilization, and protein engineering have expanded the scope of enzyme applications, making processes more efficient and sustainable. As the field continues to evolve, addressing challenges related to sustainability, safety, and consumer acceptance will be crucial. The integration of enzyme technology with emerging technologies holds great promise for the future, paving the way for innovative solutions in the food industry.

References

- 1. Aehle W, editor. Enzymes in industry: production and applications. John Wiley & Sons; 2007 Nov 5.
- 2. Buchholz K, Kasche V, Bornscheuer UT. Biocatalysts and enzyme technology. John Wiley & Sons; 2012 Dec 21.

- 3. Ray L, Pramanik S, Bera D. Enzymes-an existing and promising tool of food processing industry. Recent patents on biotechnology. 2016 Apr 1;10(1):58-71.
- 4. Yang D. Effects of High Hydrostatic Pressure and Immobilization on Glucose Oxidase and Alcohol Oxidase for Biosensor Fabrication (Doctoral dissertation, University of Georgia).
- Gomez Mattson ML, Corfield R, Bajda L, Perez OE, Schebor C, Salvatori D. Potential bioactive ingredient from elderberry fruit: Process optimization for a maximum phenolic recovery, physicochemical characterization, and bioaccesibility. Journal of Berry Research. 2021 Jan 1;11(1):51-68.
- Kuznetsova E, Proudfoot M, Sanders SA, Reinking J, Savchenko A, Arrowsmith CH, Edwards AM, Yakunin AF. Enzyme genomics: Application of general enzymatic screens to discover new enzymes. FEMS microbiology reviews. 2005 Apr 1;29(2):263-79.
- 7. Gupta R, Beg Q, Lorenz P. Bacterial alkaline proteases: molecular approaches and industrial applications. Applied microbiology and biotechnology. 2002 Jun;59:15-32.
- 8. Eş I, Vieira JD, Amaral AC. Principles, techniques, and applications of biocatalyst immobilization for industrial application. Applied microbiology and biotechnology. 2015 Mar;99:2065-82.
- 9. Vijayaraghavan P, Vincent SG. A simple method for the detection of protease activity on agar plates using bromocresolgreen dye. Journal of Biochemical Technology. 2013 Jun 26;4(3):628-30.
- 10. Kirk O, Borchert TV, Fuglsang CC. Industrial enzyme applications. Current opinion in biotechnology. 2002 Aug 1;13(4):345-51.
- Bilal M, Iqbal HM. State-of-the-art strategies and applied perspectives of enzyme biocatalysis in food sector current status and future trends. Critical reviews in food science and nutrition. 2020 Jul 3;60(12):2052-66.
- 12. Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT. The realm of microbial lipases in biotechnology. Biotechnology and applied biochemistry. 1999 Apr;29(2):119-31.
- 13. Sharma KM, Kumar R, Panwar S, Kumar A. Microbial alkaline proteases: Optimization of production parameters and their properties. Journal of Genetic Engineering and Biotechnology. 2017 Jun 1;15(1):115-26.
- 14. Ray RC, Rosell CM, editors. Microbial enzyme technology in food applications. CRC Press; 2017 Mar 27.