

Assessing the Human Health Impacts of Genetically Modified Crops: A Review of Current Evidence and Controversies

Simranjit Kaur¹, Raman Kumar²

¹Assistant Professor, Department of Computer Applications, CKD Institute of Management and Technology, Amritsar, India

²Student, Department of Computer Science Engineering, Khalsa College of Engineering and Technology, Amritsar, India

DOI: <https://doi.org/10.24321/2394.6539.202511>

INFO

Corresponding Author:

Simranjit Kaur, Department of Computer Applications, CKD Institute of Management and Technology, Amritsar, India

E-mail Id:

dhillon.simranjit@gmail.com

How to cite this article:

Kaur S, Kumar R. Assessing the Human Health Impacts of Genetically Modified Crops: A Review of Current Evidence and Controversies. *J Adv Res Med Sci Tech.* 2025;12(3&4):278-285.

Date of Submission: 2025-11-10

Date of Acceptance: 2025-11-25

ABSTRACT

Genetically modified (GM) crops are a major development in the biotechnology of agriculture, which has the potential to address issues such as food security and malnutrition but elevates the concern of the general population and scientific circles on the potential health hazards. The objective of this paper is to conduct a synthesis of the current knowledge on the effects of GM crops on human health by examining a set of available research papers and views. The methodology will entail critical literature analysis and synthesis that will address possible benefits, risks recorded and theorised, and sufficiency of the existing safety assessment procedures. Results indicate a multifaceted image: the potential advantages are a higher degree of nutritional value (e.g., Golden Rice), the creation of pharmaceuticals, a decrease in the amount of pesticide exposure by farmers (e.g., Bt crops), and the increase in food security due to higher farmer income (e.g., Bt cotton in India).

On the contrary, there are ongoing concerns about allergenicity (with products such as Brazil nut-infused soy withdrawn), possible toxicity (with disputed animal research suggesting liver and kidney impact and correlational research with long-term diseases attributed to glyphosate/GE crops), the situation with antibiotic resistance samples, and unwanted outcomes of the genetic modification process itself. There is much controversy as to whether existing safety tests are adequate, especially the use of short-term animal testing and the notion of substantial equivalence, and more intense, lengthy and independent studies are demanded. This review highlights the necessity of comprehensive, transparent research and effective regulation control in order to sail through the GM crop technology intricacies and guarantee the health of the population.

Keywords: Genetically Modified Crops, Human Health, Food Safety, Biotechnology, Allergenicity, Toxicity, Risk Assessment, Bt Crops, Glyphosate

Introduction

Since the earliest stages of agriculture, humans have altered the genetics of plants through selective breeding to develop desirable traits. However, the emergence of recombinant DNA technology in the latter half of the twentieth century introduced a far more direct and precise method of genetic modification. Genetically Modified Organisms (GMOs) are non-human organisms whose genetic material (DNA) has been altered in ways that do not occur through natural mating or recombination. This technology enables the transfer of specific genes not only between closely related species, as in conventional breeding, but also across wide biological boundaries—for example, from bacteria or viruses into plants. Foods produced from such organisms are referred to as genetically modified (GM) foods.

The first genetically modified plant, an antibiotic-resistant tobacco variety, was produced in 1983, and GM tobacco was later commercialised in China in the early 1990s. In 1994, the Flavr Savr tomato became the first GM food approved for sale in the United States, engineered for delayed ripening. Since then, global cultivation and consumption of GM crops have expanded rapidly. By 2012, major GM crops—including soybean, corn, cotton, and canola—covered nearly 170 million hectares worldwide, amounting to about 12% of global arable land. In the United States, adoption has been particularly high: by 2011–2012, over 88% of corn and 90–98% of soybeans grown were genetically modified. Most modifications confer traits such as herbicide tolerance (typically to glyphosate) or insect resistance through expression of *Bacillus thuringiensis* (Bt) proteins.¹

The motivation for the development and adoption of GM crops stems from urgent global challenges. With the world population projected to reach 9.7 billion by 2050, food production must increase substantially; current growth rates of less than 1.7% per year fall short of the estimated 2.4% required. Meanwhile, arable land per capita continues to decline—predicted to reach 0.18 ha by 2050—owing to urbanisation, land degradation, climate change, and water scarcity. Traditional breeding methods, while historically effective, are limited by the availability of natural genetic variation, long development timelines (often 10–15 years), and reliance on imprecise methods such as chemical or radiation-induced mutation. Proponents argue that genetic engineering offers a faster and more precise means of addressing these limitations, potentially improving yields, nutritional quality, and environmental resilience.

Despite these potential benefits, GM crops and foods remain a focal point of intense public and scientific debate. Concerns generally fall into two broad categories: environmental risks and human health risks. Environmental concerns include gene flow to wild relatives, impacts on

non-target species, and the evolution of herbicide-resistant weeds or insect-resistant pests. Public apprehension also centres on the potential direct and indirect health effects of consuming GM foods. Supporters—including many scientific organisations and regulatory bodies—maintain that GM foods currently on the market are as safe as conventional foods, citing decades of consumption without documented adverse effects and extensive pre-market testing. Critics, however, question the adequacy of existing safety assessments, raising issues related to allergenicity, toxicity, long-term exposure to novel proteins and DNA sequences, conflicting study results, research design limitations, and potential corporate influence.

Given the expanding role of GM crops in the global food system and the persistence of public skepticism, it is essential to develop a clear understanding of their potential human-health impacts. This paper seeks to contribute to that understanding by reviewing and synthesising findings from the selected body of research. Its primary aims are to critically evaluate the evidence regarding the potential health benefits and risks of GM crops, examine the sources of controversy surrounding safety studies, and highlight key limitations and future research needs based solely on the provided literature.

This synthesis is especially relevant in the current global context, where food systems face mounting pressures from population growth, climate change, geopolitical instability, and shifting dietary patterns. As extreme weather events, soil degradation, and crop diseases intensify, GM crops are often promoted as tools for improving resilience through drought tolerance, pest resistance, and enhanced nutritional profiles. Yet public mistrust remains widespread, fuelled by concerns over corporate control of seeds, environmental consequences, and uncertainties about long-term health effects. Meanwhile, regulatory frameworks continue to evolve, and new gene-editing technologies such as CRISPR blur the distinctions between traditional GMOs and emerging genetic modification techniques.

Understanding the human-health implications of genetically modified crops is therefore vital. Clear evidence and rigorous evaluation processes are necessary to support responsible innovation, strengthen consumer trust, and inform sound policymaking. Reviewing past studies, identifying gaps, and assessing the robustness of safety procedures are not only scientific imperatives but also essential steps toward guiding the future of global food security and public health.

Literature Review

The body of research is related to human health implications of genetically modified (GM) crops and a diverse range of findings and perspectives, determining potential benefits, identified risks, and significant debates on the safety assessment methodologies.

Potential Health Benefits

The literature provides several possible health benefits of GM crops. Nutritional enhancement is one of the areas. The most cited example is the Golden Rice project, which has been engineered to incorporate beta-carotene (provitamin A) into the grain to fight the prevalent vitamin A deficiency in developing nations, a prelude to serious health problems in childhood, as well as death. The first versions had moderate levels, but with subsequent development the better beta-carotene content was provided by such variants as 'Golden Rice 2'. It is approximated that a small portion of this rice may supply a significant portion of the Recommended Daily Allowance (RDA) of the young children. Conway (2000) also points to research funded by the Rockefeller Foundation to fortify rice with the bioavailable iron which could help solve iron-deficiency anaemia in billions of people, mostly the poor women and children. Other nutritional enhancements through genetic modification have been based on changing amino acid composition, as in the case of raising methionine in sweet lupine, or changing the proportion of carbohydrates, as in the case of the Amflora potato that produces starch high in amylopectin to use in industry, although this demonstrates how foods can be used.

The other potential option is to use GM plants in the production of pharmaceuticals and vaccines. Plants are also called molecular farming and can be modified in order to manufacture complex proteins such as antibodies, blood products, hormones and vaccine antigens. These are the plant-derived pharmaceutical proteins (PDPs) which might potentially be purified or, in other cases, may even be delivered via consumption as so-called edible vaccines. Some of the research identified by Key et al. (2008) and Verma et al. (2011)^{2,3} has been edible vaccines against hepatitis B, *E. coli* toxins, and Norwalk virus developed in crops such as potatoes, lettuce, and tomatoes. This is a strategy that has the value of the reduction of production and ease of distribution, particularly to the developing nations where traditional access to vaccines may be difficult.

There are possible indirect health benefits of GM crops with pest resistance, especially those that express Bt toxins, and this is related to the human exposure to chemical pesticides. The literature surveyed by Qaim (2009)⁴ and a particular study in China and South Africa shows much lower pesticide poisoning among farmers who adopt Bt cotton than the conventional cotton farmers. Krishna, Qaim (2008b, cited in Qaim, 2009)^{4,5} estimated potential health cost savings for Indian farmers every year in the case of the implementation of Bt eggplant because of the decreasing insecticides. Also the use of Bt crops can result in the reduction of pesticide residues in food and water. It has also been researched that Bt maize has a reduced

amount of mycotoxins, which are harmful toxins of fungi that can contaminate the grain damaged by insects and which also cause cancer.

Lastly, GM foods would indirectly benefit human health and well-being by improving food security and alleviating poverty. The evidence presented by Qaim and Kouser (2013) is very convincing because a multi-year panel study conducted in India found that the use of Bt cotton raised the household incomes of smallholders significantly. This greater income was directly converted to greater food security, in terms of greater calorie intake and a better quality diet (greater intake of pulses, fruits, vegetables, and animal products). Their estimation shows that Bt cotton use decreased the cases of food insecurity among such families by 15-20%. Other positive income impacts of similar magnitude on smallholders cultivating Bt cotton have been reported in China and South Africa.

Potential Health Risks and Concerns

In addition to the possible advantages, there are serious doubts about the health impact of GM foods in the scientific community and the general debate. One of the main issues is the allergy. The risk presents itself in various forms: there is a risk that the genes of known allergens may be introduced into non-allergenic foods and provoke a reaction in the individuals who are vulnerable. A typical case in point is the attempt to engineer soybeans to have Brazil nut protein that was cancelled after it was discovered that the protein would trigger allergic reactions in individuals who were allergic to Brazil nuts. In the same way, GM peas that expressed a bean protein (alpha-amylase inhibitor) made mice allergic to the results of the project being abandoned. The second possibility is the emergence of new and untested allergens, whether through the new protein that is produced by the transgene itself or through the accidental alteration in the levels of existing plant protein by the modification procedure. The Starlink maize incident, where the Cry9c Bt protein, which had a potential of being an allergen and prompted recalls after unintended introduction in the food supply, is an example of this concern. Assessment of allergenic potential is complicated, but there are protocols depending on the gene source, comparison of the structure of the protein and known allergens, as well as serum testing of allergenic individuals.

Another cause of concern is the use of the Antibiotic Resistance Marker Genes (ARMGs) in making most GM plants. The genes assist the scientists to make a successful selection of the modified cells that have been genetically modified, in most cases by resistance to antibiotics such as kanamycin. The fear is that these genes may move horizontally through the ingested GM food to bacteria that may be living in the human gut or in the environment and may contribute to the bigger issue of antibiotic resistance

in pathogens. Although other papers find the likelihood of such transfer to be extremely low, and supporters point out that such genes are already widespread in bacteria, control considerations have shifted to phasing them out or eliminating them in the finished product, and other methods of selection can be used.

And last, there are more general issues of unintended consequences of the process of genetic engineering itself. The placement of the foreign DNA into the genome of a plant is not always precise; it may be random and may disrupt the already existing genes (insertional mutagenesis) or rearrange them. This might cause the unexpected modifications in the structure of the plant which may alter or cause unforeseen toxins or allergens to be produced which can alter the nutritional value. Other genetic material, such as vectors (such as plasmids or viral promoters such as the Cauliflower Mosaic Virus 35S promoter used in most GM crops), has also been the subject of concern, such as the possibility that they will be active in human cells or that they can recombine to create novel viruses, though these are controversial.

Safety Assessment and Regulation

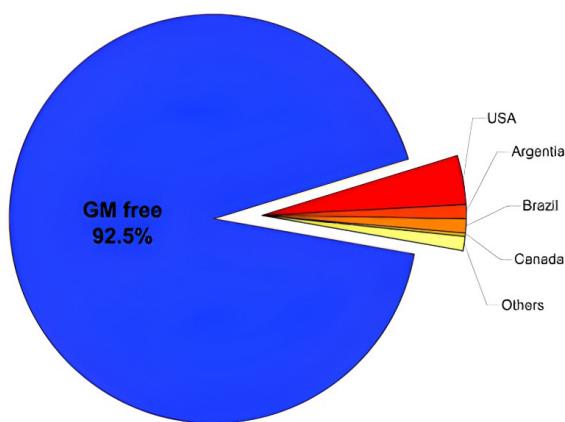
The GM food safety is also a debatable aspect of the analysed literature. The existing regulations in most areas, like the US and the EU, stipulate safety testing prior to commercialisation. The effectiveness of such tests is, however, open to question. One of them is the idea of substantial integrity, according to which the composition of a GM crop (e.g., the concentration of important nutrients, anti-nutrients, and toxins) is compared to the conventional one. In case of substantial equivalence, one might not be required to conduct more extensive testing. The detractors believe that this concept is imprecise and can miss out on minor yet significant distinctions or unintended outcomes. On the basis of the compositional analysis, Bohn et al. (2014, cited in Swanson et al., 2014)⁶ stated that GM soybeans were significantly non-equivalent.

The use of short-term animal feeding tests, usually 90 days in rats, as the main toxicological analysis of many GM crops is much criticised. Seralini et al. (2011)⁷ state the point that 90 days is not enough to assess chronic toxicity, e.g., carcinogenicity or long-term organ toxicity, which in the case of drugs like pesticides can take up to 2 years to be assessed in rodents. They indicate that regulatory authorities such as EFSA recognise the same limitation but have not required that commercialised GM food crops undergo longer tests. Moreover, they criticise the statistical approach that is frequently applied in the research of the industry and the rejection of statistically significant results as irrelevant in biology, which can be based on such criteria as the absence of linear dose-response or sex differences,

which are not necessarily relevant to all biological effects, in particular, endocrine disruption. They suggest more advanced Toxotests and more advanced SSC statistical tests.

There is also a concern about the transparency and independence of safety research. The bulk of the information presented to the regulators in support of its approval is the research carried out by the biotechnology companies themselves or ordered by the companies. According to Seralini et al. (2011), in many cases, they needed to request raw data legally or officially. Swanson et al. (2014) and Maghari & Ardekani (2011)⁸ refer to studies that state that the probability of reporting adverse effects in industry-funded studies is lower than those conducted independently, and these arguments make it questionable whether such research may be free of bias.

Another controversial regulatory issue is the labelling of GM foods. Advocates believe in compulsory labelling on the grounds of the right to know by the consumer so that he could make an informed decision. Mandatory labelling has been adopted in many countries, such as the EU.^[9] Critics, especially in the US where labelling is mostly voluntary, believe that the implication is that there is a safety risk in which none has been demonstrated, it may prevent consumers unnecessarily, and it is logically and economically awkward to segregate all. Conway (2000) encouraged such companies as Monsanto to endorse labelling in order to gain trust.¹⁰


In its yearly reports, the International Service of the Acquisition of Agri-biotech Applications (ISAAA), an organisation funded by the genetic engineering industry, presents statistics of the increase in land area under genetically modified (GM) crops in the world. Nevertheless, the statistics that are provided by ISAAA fail to take into consideration certain important facts.

In the world, GM crops occupy approximately 92.5 percent of planted area and almost 90 percent of total GM cultivation is confined to those four countries- United States, Argentina, Brazil and Canada. Indeed, 176 out of 192 nations do not produce any GMO. Though over a decade of application, there are just four GM crops that are large scale such as soybean, maize, cotton, and canola which is nearly 99 percent of GM crops growing. The two genetic characteristics in these crops are herbicides and insect resistance.

The GMO market is controlled by a few corporations in the world. Monsanto, Dupont, Syngenta and Bayer companies dominate almost all of GM seed production, but Monsanto alone is in the 90 plus percent of the world sales. The company has changed its emphasis: big industrial crops consumed by processors such as wheat, tomatoes, and potatoes are the target of the company.

A decade after genifying maize, six of the top ten countries that produce maize are entirely GM-free and in the US, less than half of the maize grown is genetically modified. Total GM occupies a mere 7.5 percent of the entire farmland globally.

The reports compiled by the ISAAA tend to inflate the numbers by adding countries that produce the least amount of GM cultivation to the larger statistical groups, that is, a few hundred hectares of GM cultivation. Indicatively, in Europe, despite the 77 percentage point growth in GM crop area in 2007, which was reported by ISAAA, the area of the GM crops was still a mere 0.119 percent of the total farmland. Organic farming on the other hand covered approximately 4% of European farmland at the time, covering an area of over 6.8million hectares out of the 170,000 farms.

Figure 1.

Discussion

The literature review provides a divided landscape regarding the effects of genetically modified (GM) crops on human health. Synthesising these perspectives reveals both acknowledged benefits and persistent, plausible concerns, largely centered on the adequacy of current knowledge and safety assessments.

Reconciling Benefits and Risks

The possible advantages, especially in their usage in the developing countries in food security and health, are obvious. Biofortification, such as Golden Rice, is an example of a particular solution to micronutrient deficiencies that afflict the vulnerable population. The fact that Bt crops have reduced the use of pesticides is directly translated into the fact that there are manifest health benefits for the farmers in the form of reduced exposure to toxic substances, which is especially important in developing nations where safety nets might be weak. Moreover, the economic benefits of smallholders who cultivate Bt cotton in India, which results

in a higher income level and, consequently, a better calorie consumption and quality of the diet, can be taken as solid evidence that GM technology can have an indirect beneficial effect on health via socioeconomic channels. There is also a promising potential in the production of cheap vaccines and pharmaceuticals in plants, but it is mainly in the phase of development.

These benefits should, however, be accompanied by the risks. The issue of allergenicity is a legitimate one, with cases of GM products expressing known allergens (Brazil nut protein in soy) or causing surprise allergenicity (GM peas in mice) during pre-market approaches. Even though these cases indicate how well the safety checks may work, they also reflect possible allergenic consequences. The issue of long-term toxicity is more controversial. Opponents such as Seralini et al. (2011) contend that minor effects found on brief (90-day) animal studies, especially liver and kidney functionality, might be precursors of future chronic issues that existing test procedures are inadequately sensitive to detect. Although regulatory agencies usually do not consider such findings relevant due to the absence of dose-response or non-reliability in sexes, the critics believe such a requirement can be unsuitable, particularly when the endocrine disruption may be a process in play. The close associations witnessed by Swanson et al. (2014) between the GE crop growth and the prevalence of various chronic diseases in the US further serve to cast doubt. Although correlation cannot be used as a cause, as the authors recognise themselves, the extent and magnitude of the correlations, in combination with the suggested biological processes (glyphosate affecting gut bacteria, CYP enzymes, and endocrine processes), may indicate that these links should be investigated instead of being dismissed. The danger posed by the antibiotic resistance marker genes would seem to be minimal owing to the existing knowledge, although the decision to phase them out is a precautionary measure.

Adequacy of Safety Assessment

One of the major themes that can be observed based on the critical literature is the perceived lack of appropriate safety assessment paradigms. The substantia equivalence principle, though supposed to be only a starting point, is criticised as overly naive and may fail to take even unintended consequences of the modification process (e.g., of insertional mutagenesis or metabolic changes), which may be non-obvious based on the simpleness of compositional analysis. The most contentious one is, perhaps, the heavy reliance on 90-day rodent feeding studies. As Seralini et al. (2011) state, these time frames are too small by the criteria used to test pesticides or medications to identify chronic outcomes of these chemicals, such as cancer or tissue damage. The absence of compulsory long-term,

multi-generational studies on GM food crops, which are commonly consumed by the masses, is considered a big loophole in the guarantee of protecting the health of people.

Additionally, there is a controversy in the interpretation of the data provided in the literature. In some cases statistically significant differences have been found between animals which are fed GM and non-GM diets but have been rejected by regulators because they are not considered biologically relevant. It casts doubts on what constitutes interpretation and whether there is a neglect in the important subtle changes in physiology. Even the experimental designs, the number of animals used, the doses, and even the control group (isogenic versus non-isogenic reference lines) have also been criticised in that they may lack statistical power or confounding variables. The recommendation of the more advanced statistical methods, such as the SSC procedure suggested by Seralini et al. (2011), is expected to retrieve more data and offer the more objective grounds of interpretation. The perceived absence of transparency (inability to access raw data on an industry) and the possibility of bias in industry-financed research also make it harder to trust the existing process of assessment.

Indirect Health Impacts and Context

In addition to the direct effects of GM crops on human health, there are indirect routes that should be taken into account. Other indirect ways in which environmental issues might affect health are the possibility that the herbicide resistance genes may be transferred to the weeds, which will drive increased herbicide use, including glyphosate, the effects of which are themselves questioned. Likewise, the Bt resistance development in target pests may eliminate the advantage of the reduced application of insecticides. The benefits in health described by Qaim and Kouser (2013) are not caused directly by the Bt cotton but by the economic empowerment that it gave to the farmers, which allowed them to better feed themselves. This underscores the relevance of the socioeconomic background in assessing the overall health implication of GM technology, especially in the developing nations. According to Conway (2000), the risk-benefit equation can appear very unlike in populations that are starving or incredibly malnourished as compared to populations that are well nourished in the developed world. In these opposing situations, a technology with even modest benefits but even minor random drawbacks would be perceived differently.¹¹

Bridging the Gap: Science and Public Perception

The significant disparity between the scientific conclusion on the safety of now-approved GM foods (as manifested by scientific establishments) and substantial scepticism among the public is apparent. This perception of the science is possibly due in part to the complexity of science, the challenge in conveying that aspect, the ethical issue

of unnatural alterations, and the distrust of corporate domination of the food source. The polarised nature of the debate in question is highly polarised, which is frequently exacerbated by the media coverage and is hard to discuss in a reasonable manner. The solution to the shortcomings and objections to safety measures, improving publicity, promoting independent research, and open dialogue, as recommended by Conway (2000), appears to be necessary measures toward the establishment of the public trust and allowing the society to make an informed choice about this potent technology. Whereas advocates of strict precaution complain, advocates of opportunity costs of delaying potentially beneficial technologies, particularly to the world's poor and hungry. To do it, it is important that both the proved successes and the scientifically plausible risks are considered and evaluated strictly on a regular basis, instead of unconditionally accepting or denying it.

Challenges / Limitations

After more than twenty years of research and commercialisation, it is difficult to determine the conclusive impacts of the GM crops on human health as there are a number of fundamental limitations in the current body of knowledge and research methods.

The main weakness lies in the lack of direct and long-term human epidemiological data. There are serious ethical and practical challenges associated with conducting controlled feeding trials on human populations over several years on GM foods. In addition, in key GM-producing areas such as the Americas, where there are no in-place labelling and traceability systems, it is virtually impossible to carry out any meaningful epidemiological research comparing the health outcomes of the populations that eat and do not eat GM foods. In turn, testing is strongly based on pre-market tests, theoretical analysis of risks, and animal experimentation.

The use of animal feeding research is in itself problematic. Though it is required to carry out toxicological evaluation, it is not necessarily easy to apply the results to humans when rodents (the most widely used) are used as the model. Moreover, the nature and meaning of these studies is also a matter of controversy, which was mentioned above. Criticisms are centred on the very short period (usually 90 days), which can be too short to ignore long-term chronic effects such as cancer or reproductive problems, which take years to show up. The statistical strength of certain studies, especially in terms of the number of animals per group, has been called into doubt, thus preventing detection of subtle but real effects. The choice of the right doses and control diets is also a factor that makes the process even more complicated. Such studies as Swanson et al. (2014), although describing possible issues, rely on ecological correlations between disease trends and the use of glyphosate/GE crops, which do not result in causation. Different types of

evidence are needed to establish a causal link, and in most instances, many of the hypothesised chronic effects do not have such evidence.

The separation of the particular effects of genetic modification is inevitably challenging because of the presence of a large number of confounding factors. GM crops have a complicated agricultural system. The issue of separating health effects directly due to the genetic modification itself versus health effects due to farming practices related to that modification (e.g., herbicides applied on HT crops), pesticide residues (e.g., glyphosate or Bt toxins), environmental factors, general dietary habits, or socioeconomic factors is an important methodological difficulty. An example is that the health effects realised in consumers of HT crops may actually be a result of the higher amounts of herbicide residues as opposed to the modified genes in the plant. Moreover, human beings are exposed to a large range of chemicals not only in the environment but also in their diet, and synergistic or cumulative effects, which may involve GM food components and other exposures, are only minimally studied and nearly impossible to evaluate.

The issue of heterogeneity in the regulatory strategies across the world is also a problem. The standards of safety assessment, the risk management, and the labelling used in different countries are different. Other countries do not have the financial and technical resources to develop and implement strong systems of biosafety regulation, and this may worsen the situation of such countries not being able to independently assess the risk or fully engage in international trade. This mosaic of laws has the ability to stop international trade and makes it complicated to evaluate the safety and impact worldwide.

The independence of the research and the possibility of bias are major constraints on developing a large trust. A big percentage of the safety research that is presented to be approved by the regulatory agencies is being funded or carried out by the biotechnology companies that are producing the GM crops. Although it is sometimes mentioned in relation to following protocols such as Good Laboratory Practices (GLP), critics complain that GLP itself does not ensure the most applicable and sensitive experimental design and that industry funding can bias the result or interpretation unwittingly or intentionally. The challenge that might occasionally face independent researchers in accessing proprietary information or even GM seeds to research them is also a hindrance to independent checking and investigating the risks they may present. This lack of studies which are really independent and long-term generates suspicion and restricts the evidence base.

Lastly, the basic issue is the definition and measurement of harm or safety. The biological implications of statistically significant differences in animal experiments are usually

arbitrary and have to rely on judgment. No universal agreement exists on what can be classified as an adverse effect, particularly of subtle physiological changes or effects which lie within the range of what is referred to as normal variation of biology, although statistically different than controls. Safety (especially, long-term harm) is a scientifically difficult concept to establish, in the effort of which it is practically necessary to demonstrate the non-existence of a given condition. This uncertainty in itself adds to the debate and the different degrees of caution undertaken by different stakeholders and regulatory authorities.

Conclusion

Through the analysis of the given literature, it is evident that the effects of genetically modified (GM) crops on human health are a complex problem with both proven/possible advantages and unresolved fears, supported by an enormous amount of controversy about the sufficiency of the existing scientific evidence and regulatory controls. GM technology is not a unified thing; its impacts are specific to the situation, depending on the crop, the trait, the farming system and the socioeconomic context.

Summary of Knowledge: There are practical benefits in GM crops. As in the case of Golden Rice, biofortification has real potential in reducing the micronutrient deficiency of the vulnerable groups. Application of insect-resistant Bt crops has been proven to decrease the application of chemical insecticides in various situations, giving rise to reported health gains for farmers through reduced exposure to pesticides and also reduced pesticide residues in consumers. Moreover, the economic benefits of GM plants such as Bt cotton can be converted into better food security and quality of food in the diet of the poor farming families, and so, another significant indirect link to better health is demonstrated.

Nevertheless, the problem of the danger to human health cannot be simply ignored. The allergenicity is also another important factor, which needs to be properly pre-market tested with every new GM product. Whether there will be unintended toxic effects of the inserted gene, protein product, or host genome disruption remains controversial due to contentious explanations of animal feeding tests and the absence of long-term evidence. Correlation studies that connect the increase in GM crops and consequential rise in the use of glyphosate to increased chronic illness, although not causing them, provide red flags that require more serious research to demonstrate the possible mechanisms that may have contributed to this, such as endocrine dysfunction or alterations in the gut microbiome. Whether 90-day animal studies are adequate or chronic, multigenerational studies are necessary has been a contentious issue on safety assessment.

Key Findings & Implications: The most reliable findings are associated with the economic and pesticide-reduction savings associated with the application of first-generation Bt crops in particular agricultural systems that have a definite, although indirect, positive health impact on farmers. Efforts to fortify crops with second-generation biofortification have been well recognised in terms of their nutritional benefits but have not been commercialised extensively. On the other hand, strong evidence of the direct negative health impact of ingesting presently certified GM foods is still inconclusive and disputable. Although the planet-wide consumption, especially in North America, has not resulted in any documented global health crises that can be caused by GM foods, the constraints of the existing monitoring procedure, along with the criticisms of the available safety research, allow the subtle or long-term effects to be neglected with a certainty depending on the literature reviewed. The correlation data performed by Swanson et al. (2014) is probably the most frightening, yet it needs specific studies to pass the correlation to the possibility of causality. The critique of safety assessment methodology, especially on the study duration and interpretation, makes it clear that there is a serious need for developing regulatory science that would keep pace with the technology and a way of dealing with the concerns of the people to do so in a legitimate manner.

Future Directions: According to the material examined, there are some directions that will be significant in the future. Increased independent, publicly funded, long-term research, such as chronic toxicity and multigenerational animal feeding studies, which is in particular required in GM crops related to pesticide resistance or tolerance, is apparent. Human epidemiological studies ought to be undertaken where ethically and practically practicable, and they may also seek to capitalise on the fact that traceability may be enhanced by populations with varying levels of exposure. Safety evaluation procedures must be refined and possibly internationalised; they should use state-of-the-art methodologies, they should be adequately powered, they should use biological significance criteria that are non-linear with dose responses and sex-specific, and they should be more open, including publicly accessible raw data of industry studies. The biological pathways of potential effects also need the research to be clarified, including better understanding the effects of glyphosate and other related chemicals, insertional mutagenesis, and the effects of glyphosate on complex systems, such as the gut microbiome. Post-market surveillance is also important, as it should be continuous to identify any unanticipated long-term effects. Lastly, it is crucial that a more knowledgeable and less divisive popular debate should be encouraged based on scientific data, yet sensitive to morality and social issues, to reach appropriate conclusions on the future of

GM crops in the world food system. The possible outcome is great, especially for food security in the world, and to achieve it in a responsible manner, it is necessary to keep a scientific eye and the society active.

References

1. Greenpeace. (2008, April). Facts and figures about genetically modified organisms [Briefing]. Greenpeace European Unit
2. Key S., Ma J. K.-C., & Drake P. MW (2008). Genetically modified plants and human health. *Journal of the Royal Society of Medicine*, 101(6), 290–298.
3. Verma C., Nanda S., Singh R. K., Singh R. B., & Mishra S. (2011). A Review on Impacts of Genetically Modified Food on Human Health. *The Open Nutraceuticals Journal*, 4, 3-11
4. Qaim M. (2009). The Economics of Genetically Modified Crops. *Annual Review of Resource Economics*, 1, 665-693.
5. Qaim M., & Kouser S. (2013). Genetically Modified Crops and Food Security. *PLoS ONE*, 8(6), e64879
6. Swanson N. L., Leu A., Abrahamson J., & Wallet B. (2014). Genetically engineered crops, glyphosate and the deterioration of health in the United States of America. *Journal of Organic Systems*, 9(2), 6-37.
7. Séralini G.E., Mesnage R., Clair E., Gress S., Spiroux de Vendômois J., & Cellier D. (2011). Genetically modified crops safety assessments: present limits and possible improvements. *Environmental Sciences Europe*, 23(10).
8. Maghari B. M., & Ardekani A. M. (2011). Genetically Modified Foods and Social Concerns. *Avicenna Journal of Medical Biotechnology*, 3(3), 109-117.
9. Zhang C., Wohlhueter R., & Zhang H. (2016). Genetically modified foods: A critical review of their promise and problems. *Food Science and Human Wellness*, 5(3), 116-123.
10. Conway G. (2000). Genetically modified crops: risks and promise. *Conservation Ecology*, 4(1), 2.
11. Letourneau D. K., & Burrows B. E. (Eds.). (2002). *Genetically Engineered Organisms: Assessing Environmental and Human Health Effects*. CRC Press.