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ABSTRACT

Glaucoma is an acquired chronic neuropathy characterised by damage
to the optic nerve head and retinal nerve fibre layer. It is a leading
cause of irreversible blindness worldwide. Our paper presents a
systematic review of recent machine learning (ML) and deep learning
(DL) approaches for glaucoma diagnosis from retinal fundus images.
We survey available datasets, preprocessing methods, network
architectures, and evaluation metrics. The review highlights automated
methods for optic nerve segmentation and glaucoma classification,
many achieving high accuracy. Results are synthesised to discuss the
strengths and limitations of current Al methods and suggest directions
for future research.
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Introduction

Glaucoma is an acquired chronic neuropathy character-
ised by damage to the optic nerve head and retinal nerve
fibre layer. It is a leading cause of irreversible blindness
worldwide. Early detection is crucial to prevent vision
loss, but diagnosis is challenging due to asymptomatic
early stages. The different stages that are encountered
during the myriad developmental stages are depicted in
Fig. 1 below. Computer-aided diagnosis (CAD) systems
using retinal fundus images provide a non-invasive way
to detect characteristic glaucomatous changes. In these
images, glaucoma often manifests as optic disc cupping and
nerve fibre layer thinning, which can be quantified (e.g.,
via the cup-to-disc ratio). Advances in Al enable automated
quantification of such changes. Traditional methods relied
on handcrafted features (textures, shapes) extracted from
fundus images, while modern approaches use DL (e.g.,

CNNs) to learn features directly. This review organises
the state of the art by ML vs. DL methods, summarises
datasets and preprocessing, and highlights key results.*?

Thus, conventional CAD systems were based on machine
learning (ML), including explicit image processing
(segmentation of disc/cup and vessels), handcrafted feature
extraction (texture, shape, and statistical descriptors),
and then classifications using algorithms like support
vector machines (SVM) or decision trees. In comparison,
deep learning (DL) uses multi-layer neural networks
(especially convolutional neural networks, CNNs) that take
raw images and automatically learn hierarchical feature
representations. Thus, DL can operate end-to-end without
manual feature design. For instance, a recently done work
noted that ML methods firstly segmented structures and
then extracted features (edges, intensity gradients),
whereas CNNs directly learnt vastly discriminative features
from raw pixel intensities.
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Figure |.Stages of Glaucoma
Review Methodology

We conducted a systematic literature survey using PRISMA
guidelines.? Searches used keywords like “glaucoma”,
“fundus images”, “machine learning”, and “deep learning”
across IEEE Xplore, PubMed, Springer, etc.* We included
peer-reviewed research articles (=last 20 years, English)
on ML/DL for glaucoma detection using fundus images.
Excluded were reviews, non-English articles, and abstracts.®
After screening titles/abstracts and full texts, 18 studies met
the inclusion criteria. We categorised them into traditional
ML and DL approaches and extracted information on data
sources, image preprocessing, model architectures, and
evaluation metrics.

Datasets and Pre-processing

Public retinal fundus datasets are key resources. Common
glaucoma-related datasets include ACRIMA (705 images),®
Drishti-GS1 (101 images),” RIM-ONE (455 images), ORIGA,
and DRIVE/STARE (with glaucoma labels). These vary widely
in resolution and population. Larger general fundus data-
sets (e.g., MESSIDOR, Kaggle) are also used, sometimes
relabelled for glaucoma. Data diversity (ethnicity, imaging
devices) affects performance.

Preprocessing is crucial. Typical steps include image
enhancement (contrast/illumination correction), vessel
segmentation (to isolate retinal vasculature), and optic
disc/cup segmentation (computing cup-to-disc ratio). For

example, matched-filter or CNN methods extract vessel
maps, and specialised networks delineate the optic
disc and cup.® Features (e.g., texture, shape) are then
normalised (to reduce brightness/contrast variability)
and fed to ML classifiers or directly passed to DL models.
Data augmentation (rotations, flips, etc.) is also applied
to increase sample diversity and improve generalisation.?
Overall, good preprocessing (quality filtering, ROl extraction)
enhances the models’ discriminative power.°

Machine Learning Approaches

Traditional ML systems extract handcrafted features from
fundus images and train classifiers. Acharya et al.! extracted
texture and higher-order spectrum (HOS) features from
the optic disc region and evaluated multiple classifiers
(SVM, Naive Bayes, and Random Forest). Their Random
Forest achieved >91% accuracy. In another work, Acharya
et al. used Gabor-filter features with PCA and SVM, reach-
ing ~96.9% accuracy.’ Acharya et al. also applied texton
features and local configuration patterns with an LS-SVM,
achieving 98.3% accuracy on a subset.!!

Hybrid ML-DL methods have also been proposed. Civit-
Masot et al.*? built a dual-stage system: a CNN segmenter
extracts optic disc/cup features, and an SVM classifies
glaucoma. This achieved 91.5% accuracy (92.3% sensitivity,
90.7% specificity). Claro et al.’* combined transfer-learning
(pretrained CNN) features and texture descriptors, classified
by SVM, and obtained ~98% accuracy on Drishti. Other
studies used wavelet-based texture features with SVM and
ensemble classifiers.!* For instance, Dua et al.** used 2D
wavelet energy features with feature selection, achieving
~93% accuracy via SYM. In summary, ML-based approaches
can yield high performance on moderate datasets but
rely on manual feature design. They often require explicit
segmentation (cup/disc) and may be less flexible than
end-to-end DL. Table 1 below discusses a few such ML
techniques.

Table 1.Machine Learning Approaches

Authors & Dataset / - Performance
Paper ID Year Data Used Methodology Features Used Classifier Metrics
Civit- Fundus . s?euril'-?lflgNefor Disc and cup Accuracy: 91.5%,
[11] Masot et | images (disc & ¥ o morphological SVM Sensitivity: 92.3%,
segmentation + ML
al. (2020) | cup features) g e features Specificity: 90.7%
classifier
Claro et al cor:\é?r::: nr'I?adneslfer CNN features
[12] " | Drishti dataset . & + texture SVM Accuracy=98%
(2019) learning + texture .
. descriptors
descriptors
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Leite et al. Corvis ST data Machine Iearnlng . Corvis ST ML Reported effective
[13] (glaucoma & automatic biomechanical e
(2021) . classifiers assessment
myopia) assessment features
Wavelet-based
[14] D:’;Oitz?l' ::r:r;d:: energy feature enze? W?;/aetlﬁtes SVM Accuracy=93%
& extraction + SVM &Y

Deep Learning Approaches

DL methods, especially convolutional neural networks
(CNNs), automatically learn features from fundus images.
Many recent works focus on optic disc/cup segmentation,
since the cup-to-disc ratio is a crucial biomarker. Haider et
al.® proposed two CNN architectures (SLS-Net, SLSR-Net)
incorporating separable convolutions and residual blocks
to segment disc and cup efficiently. They reported superior
segmentation accuracy across multiple datasets. Al-Bander
et al.’®'7 and al.*® used a fully convolutional Dense Net to
segment the optic disc and cup; they achieved Dice scores
~0.%17 scores of 0.95 (disc) and ~0.81 (cup), scores of (cup),
and an AUC of 0.98 for glaucoma detection. Mitra et al.®
employed a CNN to localise the optic disc region of interest
and reported AUC = 0.98 on two public datasets.

DL has also been applied to longitudinal and multimodal
data. Asaoka et al.? trained a deep classifier on visual
field perimetry maps (instead of fundus images) to detect
pre-perimetric glaucoma, achieving AUC 0.93 (superior
to standard methods). Chen et al.’® used a variational
autoencoder to predict retinal nerve fibre layer (RNFL)

thickness maps from colour fundus photos; their model
yielded an AUC of 0.96 for glaucoma versus normal. Bisneto
et al.?° applied a GAN to generate retinal image features
and combined them with texture analysis, achieving AUC
0.96 (95% sensitivity) for glaucoma detection. These
examples show deep models handling related tasks and
even generating synthetic data.

Large-scale CNN ensembles have also been explored. Several
teams (e.g., Liu et al. (JAMA Ophthalmol 2019) and Hood
et al.) have trained on hundreds of thousands of fundus
images, achieving high sensitivity for glaucomatous optic
neuropathy (often relying on active/transfer learning).16°
Transfer learning (using ImageNet-pretrained backbones)
and aggressive data augmentation (rotations, colour shifts)
are common to mitigate limited medical data. Some hybrid
DL architectures (e.g., CNN+RNN) have been proposed to
integrate sequential OCT or visual field data for progression
modelling, though these lie beyond fundus-only models. In
general, end-to-end DL systems often exceed ML baselines
when data are sufficient, but they require careful training
and interpretability tools (e.g., attention maps) to ensure
clinical trust.

Table 2.Deep Learning Approaches

Auth .
Paper u:{ezrrs & Dataset / Data Used Methodology Features / Focus | Performance Metrics
DARC (Detection of | CNN-aided glaucoma Ap(?ptosmg Effective glaucoma
Normando . . . retinal cell . .
[15] Apoptosing Retinal progression . progression prediction
etal. (2020) Cells) images rediction detection (qualitative)
& P features q
Deep learning system Reported stron
[16] Lietal. Large dataset of for prediction of Retinal rediitive abilit (ng|
(2022) retinal photographs | glaucoma incidence & photographs P 2022) y
progression
CNN architectures: Superior segmentation
Haider et al. Public glaucoma SLS-Net & SLSR- Disc and cup P &
[17] . . accuracy across
(2022) datasets Net for disc/cup segmentation
. datasets
segmentation
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Fully convolutional - S SN~
18] Al-Bander et Fundus datasets DenseNet for Optic discand | Dice: ~0.95 (disc), ~0.81
al. (2018) . cup (cup); AUC: 0.98
segmentation
Mitra et al. | Two public glaucoma CNN for ROI Optic disc 5
[19] (2018) datasets localization localization AUC=0.98
Asaoka et al. | Visual field perimetry e . . .
[20] (2016) maps Deep classifier Visual field maps AUC: 0.93
Table 3.Comparison of selected ML vs. DL glaucoma models: datasets and key metrics.
Paper Model Type Dataset Used Accuracy (%) | Sensitivity (%) | Specificity (%) | AUC
Civit-Masot et Fundus disc/cup
al. (2020) ML (CNN+SVM) features (private) L5 92.3 90.7
Claro et al. L . -
(2019) ML (SVM) Drishti-GS1 (public) 98
Dua et al. ML (SVM) Fundus images (small) ~93 - - -
(2012) &
Diaz-Pinto et 5 public fundus DBs
al. (2019) DL (CNN) (1707 imgs) 93.46 85.80 0.9605
Al-Bander et .
al. (2018) DL (DenseNet) Fundus sets (public) - - - 0.98
Mitra et al. .
(2018) DL (CNN) 2 public fundus sets - - - 0.98
Discussion confidence intervals or use prospective clinical validation.

The reviewed ML and DL methods consistently report high
diagnostic metrics (sensitivity, specificity, and accuracy
are often >90%). Deep models generally achieve superior
accuracy, especially when large, diverse datasets are
available. CNNs can capture complex retinal features
(subtle RNFL defects, vessel patterns) without manual
segmentation. For example, segmentation CNNs have
enabled more precise optic disc/cup delineation, directly
improving glaucoma classification. However, DL models
are data-hungry; most glaucoma datasets are relatively
small, so overfitting is a concern. Cross-dataset validation
often reveals performance drops. Robustness to image
variations (different cameras, lighting) is an open issue.

Traditional ML approaches perform better than naive
DL on very small datasets, due to simpler models and
the use of expert features. They offer interpretability
(specific features linked to glaucoma) but may miss complex
patterns. Hybrid methods aim to capture the best of both
worlds. In practice, choice of method depends on available
data and application. Most studies use common metrics
(sensitivity, specificity, AUC); while reported scores are
impressive, care is needed because dataset biases and class
imbalance can inflate performance. Few studies report
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Key challenges and future directions include: Larger, more
diverse datasets: To improve generalisability, especially
for multi-ethnic populations and different camera types.
Multimodal integration: Combining fundus imaging with
OCT or perimetry could enhance prediction and progression
tracking. Longitudinal prediction: Few works have addressed
time-series risk of glaucoma onset; this is a promising
area (e.g., using RNNs on serial OCT). Explainability:
Especially for DL models, providing saliency maps or feature
attribution will be important for clinical adoption. Real-
world deployment: Mobile and telemedicine applications
of these algorithms are beginning to be explored, which
could enable large-scale screening in underserved regions.

Conclusion

This review summarised advances in automated glaucoma
diagnosis using fundus images. Both ML and DL techniques
have made significant strides. Feature-based ML models
(SVMs, random forests with handcrafted features) and end-
to-end CNN models have each achieved high accuracy in
glaucoma detection. CNNs, in particular, have demonstrated
a strong ability to segment optic nerve structures and detect
subtle disease patterns. Nonetheless, challenges remain:
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limited labelled data, the need for standardised datasets,
and ensuring model generalisability. Future work should
focus on building larger, diverse datasets, developing
interpretable Al methods, and validating systems in clinical
settings. With ongoing research, Al promises to improve
early glaucoma screening and help prevent vision loss on
a global scale.
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