Progesterone Treatment on Prefrotal Cortical Demyelination in Experimental Diabetes-induced Brain Injury

Authors

  • Adetunji Opeyemi Adebola Department of Anatomy, College of Health and Medical Sciences, Benjamin Carson (SNR) School of Medicine, Babcock University, Ilisan-Remo, Ogun State, Nigeria & Department of Anatomy, College of Health Sciences, University of Ilorin, Kwara State, Nigeria.

Keywords:

Myelination, Progesterone, Prefrontal cortex, Streptozotocin

Abstract

Introduction: Clinical studies have been looking for an easy way to solve neurodegenerative diseases and testing of whether effect of progesterone can ameliorate the neurodegenerative effect caused by an induce streptozotocin.
Methods: Animals were randomly grouped into six (6) groups of eight (8) adult wistar rats each: Group CTR, Group LDP, Group HDP, Group STZ, Group STZ + LDP, and Group STZ + HDP. Progesterone was administered daily for seven days after hyperglycaemia is confirmed in groups (STZ + LDP and STZ + HDP), likewise administration of progesterone only is for seven (7) days in groups (LDP and HDP) and the doses of progesterone administration varies, low doses of 4 mg/kg/b.w/day to groups (LDP and STZ + LDP) and high doses of 8 mg/kg/b.w/day to groups (HDP and STZ + HDP), while groups (CTR and STZ) received none.
Results: Consumption of water and food in each group show an effect on the serum glucose, via an increase in body weight of diabetic animals in comparison with control rat’s body weight which decreases. At the end of the experiment (18 weeks) the rats are sacrifice and microscopic study of neurotrophic and neuroprotective of rats, prefrontal cortex tissue sampling shows that cells in the molecular layer of the induce-hyperglycaemia groups rats (STZ, STZ + LDP & STZ + HDP) are reduced and the cortical layer are wider and contain fewer cells compared to the non-induced hyperglycaemia groups rats (CTR, LDP & HDP) that has thiner cortical layers and Loss of myelin sheath in the groups (STZ, LDP and STZ + LDP) in contrast to groups (CTR and STZ + HDP).
Conclusion: Involvement of myelinated axons in the morphologic impairment induced by an untreated hyperglycaemic state, an evident in the study, therefore doses of progesterone have an effect on the myelination of axon.
Keywords: Myelination, Progesterone, Prefrontal cortex, Streptozotocin

How to cite this article:
Adebola AO. Progesterone Treatment on Prefrotal Cortical Demyelination in Experimental Diabetes Induced Brain Injury. Int J Adv Res Gynaecol Obstet. 2023;1(1):26-33.

References

Akinola O, Gabriel M, Suleiman AA, Olorunsogbon F. Treatment of alloxan-induced diabetic rats with metformin or glitazones is associated with amelioration of hyperglycaemia and neuroprotection. Open Diabetes J. 2012;5:8-12. [Google Scholar]

Arnsten AF, Goldman-Rakic PS. Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science. 1985;230(4731):1273-6. [PubMed] [Google Scholar]

Andallu B, Varadacharyulu NC. Antioxidant role of mulberry (Morus indica L. cv. Anantha) leaves in streptozotocin-diabetic rats. Clin Chim Acta. 2003;338:3- 10. [PubMed] [Google Scholar]

Bancroft JD, Gamble M. Theory and practice of histological techniques. Edinburgh: Churchill Livingstone; 1982. [Google Scholar]

Berman KF, Weinberger DR. The prefrontal cortex in schizophrenia and other neuropsychiatric diseases: in vivo physiological correlates of cognitive deficits. Prog Brain Res. 1990;85:521-36. [PubMed] [Google Scholar]

Cargill RS, Geddes DM, Malcom S, Hoffman SW. Progesterone is protective at the cellular level in an in vitro model of TBI. J Neurotrauma. 1999;16:983.

Carroll JC, Rosario ER, Chang L, Stanczyk FZ, Oddo S, LaFerla FM, Pike CJ. Progesterone and estrogen regulate alzheimer-like neuropathology in female 3xTg-AD mice.

J Neurosci. 2007;27(48):13357-65. [PubMed] [Google Scholar]

Chao TC, Van Alten PJ, Walker RJ. Steroid sex hormones and macrophage function: modulation of reactive oxygen intermediates and nitrite release. Am J Reprod Immunol. 1994;32(1):43-52. [PubMed] [Google Scholar]

Dalley JW, Cardinal RN, Robbins TW. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev. 2004;28(7):771-84. [PubMed] [Google Scholar]

Davey P, Brown E, Charani E, Fenelon L, Gould IM, Holmes A, Ramsay CR, Wiffen PJ, Wilcox M. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev. 2013;(4):CD003543. [PubMed] [Google Scholar]

Drevets WC, Videen TO, Price JL, Preskorn SH, Carmichael ST, Raichle ME. A functional anatomical study of unipolar depression. J Neurosci. 1992;12(9):3628-41. [PubMed] [Google Scholar]

Garg MC, Ojha S, Bansal DD. Antioxidant status of streptozotocin diabetic rats. Indian J Exp Biol. 1996;34(3):264-6. [PubMed] [Google Scholar]

Goldman-Rakic PS. Circuitry of primate prefrontal cortex and the regulation of behaviour by representational memory. In: American Physiological Society, editor. Comprehensive Physiology. 1987. p. 373-417.

Grünblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S. Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem. 2007;101(3):757-70. [PubMed] [Google Scholar]

Hoyer S. Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol. 2004;490(1-3):115-25. [PubMed] [Google Scholar]

Hoyer S, Lannert H. Long-term abnormalities in brain glucose/energy metabolism after inhibition of the neuronal insulin receptor: implication of tau-protein. J Neural Transm Suppl. 2007;(72):195-202. [PubMed] [Google Scholar]

Roriz-Filho JS, Sá-Roriz TM, Rosset I, Camozzato AL, Santos AC, Chaves ML, Moriguti JC, Roriz-Cruz M. (Pre) diabetes, brain aging, and cognition. Biochim Biophys Acta. 2009;1792(5):432-43. [PubMed] [Google Scholar]

Keller JN, Mattson MP. Roles of lipid peroxidation in modulation of cellular signalling pathways, cell dysfunction, and death in the nervous system. Rev Neurosci. 1998;9(2):105. [PubMed] [Google Scholar]

Matsuoka A, Kizuka F, Lee L, Tamura I, Taniguchi K, Asada H, Taketani T, Tamura H, Sugino N. Progesterone increases manganese superoxide dismutase expression via a cAMP-dependent signalling mediated by noncanonical wnt5a pathway in human endometrial stromal cells. J Clin Endocrinol Metab. 2010;95(11):291-9. [PubMed] [Google Scholar]

Mattes JA. The role of frontal lobe dysfunction in childhood hyperkinesis. Compr Psychiatry.

;21(5):358-69. [PubMed] [Google Scholar]

Mayer G, Nitsch R, Hoyer S. Effects of changes in peripheral and cerebral glucose metabolism on locomotor activity, learning and memory in adult male rats. Brain Res. 1990;532(1-2):95-100. [PubMed] [Google Scholar]

Michel F, Bonnefont-Rousselot D, Mas E, Drai J, Therond P. [Biomarkers of lipid peroxidation: analytical aspects]. Ann Biol Clin (Paris). 2008;66(6): 605-20. French. [PubMed] [Google Scholar]

Morrissy S, Xu B, Aguilar D, Zhang J, Chen QM. Inhibition of apoptosis by progesterone in cardiomyocytes. Aging Cell. 2010;9(5):799-809. [PubMed] [Google Scholar]

National Toxicology Program. Streptozotocin CAS No. 18883-66-4. National Institute of Environmental Health Sciences. 11th ed Report on Carcin, 2005.

Nguyen H, Syed V. Progesterone inhibits growth and induces apoptosis in cancer cells through modulation of reactive oxygen species. Gynecol Endocrinol. 2011;27(10):830-6. [PubMed] [Google Scholar]

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351-8. [PubMed] [Google Scholar]

Pari L, Venkateswaran S. Protective role of Phaseolus vulgaris on changes in the fatty acid composition in experimental diabetes. J Med Food. 2004;7(2):204-9. [PubMed] [Google Scholar]

Roof RL, Duvdevani R, Braswell L, Stein DG. Progesterone facilitates cognitive recovery and reduces secondary neuronal loss caused by cortical contusion injury in male rats. Exp Neurol. 1994;129(1):64-9. [PubMed] [Google Scholar]

Martínez-Tellez R, Gomez-Villalobos MJ, Flores G. Alteration in dendritic morphology of cortical neurons in rats with diabetes mellitus induced by streptozotocin. Brain Res. 2005;1048(1-2):108-15. [PubMed] [Google Scholar]

Salkovic-Petrisic M, Tribl F, Schmidt M, Hoyer S, Riederer P. Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem. 2006;96(4):1005-15. [PubMed] [Google Scholar]

Shoham S, Bejar C, Kovalev E, Schorer-Apelbaum D, Weinstock M. Ladostigil prevents gliosis, oxidativenitrative stress and memory deficits induced by intracerebroventricular injection of streptozotocin in rats. Neuropharmacology. 2007;52(3):836-43.

[PubMed] [Google Scholar]

Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47(2):389-94. [PubMed] [Google Scholar]

Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50(6):537-46. [PubMed] [Google Scholar]

Preuss TM. Do rats have prefrontal cortex? The Rose- Woolsey-Akert program reconsidered. J Cogn Neurosci. 1995;7(1):1-24. [PubMed] [Google Scholar]

Watanabe M. Reward expectancy in primate prefrontal neurons. Nature. 1996;382(6592):629-32. [PubMed] [Google Scholar]

Weinberger DR. A connectionist approach to the prefrontal cortex. J Neuropsychiatry Clin Neurosci. 1993;5(3):241-53. [PubMed] [Google Scholar]

Chen Y, Liang Z, Tian Z, Blanchard J, Dai CL, Chalbot S, Iqbal K, Liu F, Gong CX. Intracerebroventricular streptozotocin exacerbates alzheimer-like changes of 3xTg-AD mice. Mol Neurobiol. 2014;49(1):547-62. [PubMed] [Google Scholar]

Downloads

Published

2023-01-31