Unveiling the Molecular Complexity of Life: Exploring the Synergy of Genomics and Proteomics

Authors

  • Onome Ebi Student, Department of pharmacy, University of Maiduguri (UNIMAID), Nigeria

Keywords:

Genomics, Proteomics, Integration, Applications, Challenges, Future Directions

Abstract

The fusion of genomes and proteomics in the post-genomic age has produced ground-breaking understandings of the complex systems governing cellular function, disease development, evolutionary processes. In order to better understand the molecular complexity of life, this review paper highlights the synergistic interaction between genomics and proteomics. We examine the technologies that underpin these fields, highlighting the revolutionary potential of next-generation sequencing and mass spectrometry in, respectively, deciphering genomic sequences and protein expression. Applications of this combination include customized medicine, drug discovery, disease processes, evolutionary insights. Problems including data integration, technical constraints, ethical issues must still be solved. Future work on systems biology models that incorporate genomes and proteomics promises a comprehensive understanding of biological processes. The partnership between genomics and proteomics holds the prospect of changing our understanding of biology and revolutionizing medical and scientific progress as technology develops and these difficulties are overcome.

References

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular biology of the cell (4th ed.). Garland Science.

Aebersold, R., & Mann, M. (2003). Mass spectrometrybased proteomics. Nature, 422(6928), 198-207.

Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. New England Journal of Medicine, 372(9), 793-795.

ENCODE Project Consortium. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489(7414), 57-74.

Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points. Science, 315(5814), 972-976.

Gibson, G. (2009). Decanalization and the origin of complex disease. Nature Reviews Genetics, 10(2), 134-140.

Gottesman, S., & Storz, G. (2010). Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harbor Perspectives in Biology, 3(12), a003798.

Green, E. D., & Guyer, M. S. (2011). Charting a course for genomic medicine from base pairs to bedside. Nature, 470(7333), 204-213.

Gygi, S. P., Rochon, Y., Franza, B. R., & Aebersold, R. (1999). Correlation between protein and mRNA abundance in yeast. Molecular and Cellular Biology, 19(3), 1720-1730.

Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q., ... & MacArthur, D. G. (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 581(7809), 434- 443.

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., ... & International Human Genome Sequencing Consortium. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860-921.

Marchler-Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., Geer, L. Y., ... & CDD/SPARCLE. (2015). CDD: NCBI’s conserved domain database. Nucleic Acids Research, 43(D1), D222-D226.

Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., & Mann, M. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular & Cellular Proteomics, 1(5), 376-386.

Pandey, A., & Mann, M. (2000). Proteomics to study genes and genomes. Nature, 405(6788), 837-846.

Quackenbush, J. (2002). Microarray data normalization and transformation. Nature Genetics, 32(Suppl), 496- 501.

Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140.

Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., ... & Selbach, M. (2011). Global quantification of mammalian gene expression control. Nature, 473(7347), 337-342.

Smith, M. A., & Hoffman, E. P. (2002). An integrative network model of biological aging (INMBA). Experimental Gerontology, 37(1), 17 27.

Thompson, A., Schafer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., ... & Hamon, C. (2003). Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Analytical Chemistry, 75(8), 1895-1904.

Vogel, C., Abreu Rde, S., Ko, D., Le, S. Y., Shapiro, B. A., Burns, S. C., & Sandhu, D. (2010). Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Molecular Systems Biology, 6(1), 400.

Downloads

Published

2023-08-05