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Human Factors Engineering (HFE) principles were initially implemented 
in safety-related procedures in aviation and other high-risk industries 
to minimize human error-related risks. The introduction of HFE in 
healthcare aims not to eliminate the ‘human factor,’ but rather to 
enable ‘engineering’ to redesign clinical settings to become resilient to 
unanticipated events related to operational and/or safety shortcomings. 
Given the complexity of the Operating Room (OR) and the socio-
technico-cognitive activities that occur during a surgical operation, 
HFE needs to consider a wide spectrum of Surgical Flow Disruptions 
(SFD), such as miscommunications, fatigue, workload, physical layout 
of the site etc. The increase of fully automated/computer-assisted 
surgical systems into everyday surgical practice highlights the need 
for specialized technical skills and a subsequent change in mind-set 
and intraoperative decision-making. The complexity of the modern 
OR calls out for incorporation of a culture safety also illustrated by the 
close interaction of Usability Engineering (UE) and Risk Management 
(RM) throughout the lifecycle of a medical system and by Regulations 
currently in force. This article discusses the practical parameters of 
HFE incorporation into surgical practice and aims to highlight how this 
holistic redefinition of OR settings promotes patient and medical staff 
safety through mitigation of error-prone processes.
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Background
Medicine has been largely built on the primum non nocere 
principle, which reflects a rather human-based perception of 
accountability. Nevertheless, the evolution of both modern 
surgery and Operating Rooms (ORs) has rendered the 
concept that Medical Errors (MEs) are by definition non-
intentional Human Errors (HEs) or “failures of planned 
actions”1,2 obsolete. Incorporation of complex automated 
and/or Robotic Surgical Systems (RAS) into the healthcare 
edifice has resulted in what Hollnagel3 defines and later 
re-discusses as joint “cognitive systems.” In order to ensure 
safety and quality of surgical practice, HEs triggered by 
teamwork and communication failures (e.g., delays in 
decision-making, lack of surgical/medical proficiency, poor 
time management etc.) should be taken into account as well 
as the technical dexterity and familiarization of healthcare 
professionals with semi- and fully-automated systems. 

The inevitability of HEs4,5 often shifts the liability burden 
towards Medical Devices (MDs) with the presumption 
that MD innovation will effortlessly overcome them. But 
this is far from the reality of surgical practice as systems, 
per se, are incapable of preventing HEs and worse still, 
are error-stimulants themselves. The purpose of HFE is 
to introduce a systems-based approach that coordinates 
human practices with Machine Interface (MI), providing 
insight into human-machine interaction for the mitigation 
of intraoperative adverse events (Figure 1). 

organizational processes and mentality patterns. Yet, the 
available evidence points to a safety gap related to human 
error.11,12

The six-layer hierarchical framework of Rasmussen13 and 
Reason’s Swiss cheese model of accident causation1,4 
have heavily influenced our perception of HEs. The latter 
considers accidents as active failures (i.e. immediately 
either discernible or latent), which are the result of 
deficiencies in the organizational level of a system, and 
thus are more difficult to identify and more demanding 
to address. Following Reason’s model, many others have 
emerged trying to delimitate error causation. All of them 
aim to manage usability of technology, human errors, 
clinician’s performance and system resilience. In terms of 
unsafe factors, Edward’s Software-Hardware-Environment-
Liveware (SHEL) model,4,11 classifies accident causes by 
individuals, hardware, software, and environment. Based 
on Reason’s framework, Wiegmann and Shappell further 
extracted systematic HE taxonomy from US Navy aviation 
accidents and set up the Human Factors Analysis and 
Classification System (HFACS).14  Most, if not all, of these 
models were initially used in high-risk industries such as 
aviation or nuclear and were adopted by surgical practice 
when automation levels began to challenge the traditional 
operational modes and communication of interdisciplinary 
staff. 

There are numerous studies associating HFs to surgical 
practice mainly focusing on communication deficiencies, 
OR design, environmental factors, and technical surgical 
errors.11,12,14-17

Communication deficiencies can be an exhausting burden 
for surgical settings as they are running through all stages 
of surgical operation. Wiegmann et al.18 used direct 
observation to study and characterize disruptions in the 
cardiac OR and found that miscommunication occurred 
an average of nine times per operation, while disruptions 
primarily consisted of teamwork and communication 
failures, which were also the strongest predictor of surgical 
errors. Lingard et al.19 completed an observational study 
to further deconstruct communication failures in the OR, 
and ultimately observed communication failures caused 
by poor timing, inaccurate or incomplete information, 
failure to include key team members, or failure to resolve 
issues in 31% of OR communications. ElBardissi et al.20 
found a strong correlation between the occurrence of 
technical errors and teamwork failure in 31 cardinal 
surgical sites. The above suggest that interventions to 
mitigate communication deficiencies could also improve 
intraoperative communication and patient safety. Frasier 
et al.21 performed a purposive sampling on 10 operations 
and identified lower communication rates among cross-
disciplinary duos, which was associated with a higher 

Figure 1.Parameters of safe medical device design
We aim to discuss herein practical aspects of distractions 
associated with surgical practice and to identify HF strategies 
implemented to mitigate intraoperative risk and error-prone 
processes and to enhance Human-Machine Interface (HMI).

The Effect of Human Factors on Medical Errors in 
Operating Rooms

The exact prevalence, severity and nature of intraoperative 
patient harm due to potentially preventable HEs is actively 
debated,6-9 and inconsistently reported10 due to the 
focus on individual performance and events rather than 
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incidence of ineffective communication events. Wakeman et 
al.22 focus on pediatric surgery and explain that unless team 
dynamics are well-established, unconscious psychological 
forces are constantly jeopardizing the performance of 
teamwork as well as their situational awareness.

Beyond the characteristics and behaviors of the individuals 
at the center of the system, a number of systems-based 
factors influencing surgical safety have been explored, 
such as the high level of environmental interference in 
the OR23 and the significant negative impact of poor OR 
layout and design on surgical workflow. Antoniadis et 
al.23 studied 65 surgical cases in two German clinics and 
identified at least 11 intraoperative distractions, which 
were observed 9.82 times per hour on average. Jung et al.24 
conducted a prospective cohort study in 265 consecutive 
patients undergoing laparoscopy and reported that the 
attending surgeon was distracted by both cognitive and 
auditory sources in about 45% of cases. Environmental 
factors within the OR such as noises,12 improper lighting or 
temperature, congestion due to excessive wiring or location 
of equipment and displays16,25  have been associated with 
OR hazards. Raghavendra et al.26 emphasize that apart 
from intraoperative impairments that may have a direct 
negative impact on the clinical outcome, ergonomic and 
layout deficiencies are also linked to potential pollution 
events, increase of workload and fatigue as well as physical 
problems including back and neck issues. Catanzarite 
et al.15 support the latter remark and have shown that 
musculoskeletal disorders (WMSDs) are highly prevalent 
among surgeons of all specialties but particularly among 
laparoscopy and RA surgeons with an impact on work 
absenteeism, decreased productivity and work-related 
injuries. The authors also suggest design modifications 
such as standing supports, height details for monitors 
and tables, working angles etc. to prevent intraoperative 
injuries among the surgical team. 

Surgical Flow Disruptions and HFE in Operating 
Rooms 

Identification and quantification of systemic intraoperative 
errors can be quite a challenge especially on retrospective 
level given the inherent hindsight bias.12,16,27 This has led 
researchers to look for indirect predictors of irreversible 
or fatal events, such as flow disruptions. Through the 
observation of 31 cardiac surgery operations, Wiegmann 
et al.18 have proposed the distinction of surgical errors 
and Surgical Flow Disruptions (SFDs) defining the latter as 
‘‘deviations from the natural progression of an operation 
that potentially compromise the safety of the operation.’’ 
ElBardissi et al.20 have categorized SFDs according to 
their origins, i.e. issues with teamwork/ communication, 
extraneous interruptions, equipment-related problems, 
resource-based issues and supervisory/ training-related 
issues18. These factors, independently or in combination, 

serve as indicators of surgical performance as they can 
predict the likelihood of an undesired event, which may 
bear unwanted consequences to the patient, the surgical 
staff or the OR operation. 

Several observational tools, methodologies and analytical 
approaches have since been developed to identify and 
address SFDs.14,16,28-30 The interventions most often proposed 
in the literature and used in surgical practice include use 
of checklists,12,28,31 preoperative briefing,12 team work-
based training courses,12,27 usability testing to enhance 
surgical safety,15,23,26,32,33 standardization of processes and 
development of a culture safety.16,34 Although most of 
the above may be considered as ‘common sense,’33 the 
effectiveness of an HFE program designed to address OR 
resiliency cannot be taken for granted. All interventions 
depend on the timely and accurate reporting of safety 
events and the willingness of surgical staff to adapt their 
working mentality towards reporting, flexibility and re-
learning. For example, checklists will not be effective unless 
routinely used by the entire team. More than that, no 
matter how many HEs a usability test will identify, unless 
training, development of skills and familiarization with 
MI is cultivated, the complexity of patient physiology will 
always be an obstacle between the surgeon and the HFE 
interventions. A non-exhaustive list of currently used HFE 
applications includes:

• Real-Time Locking (or Tracking) Systems (RTLS) to 
identify and locate tagged equipment, personnel or 
patients35-37

• Automated Workflow Systems (AWS) to enhance OR 
communication38-40

• New web-based Training Platforms for Medical Device 
operation41,42 

• Decision Support Systems for OR scheduling43,44

Altogether, evidence indicates that hospital staff (medical, 
nursing and technical) is responding positively to the 
increasing trend of HMI automation but usability issues (e.g. 
technical limitations, solution functions, operational support, 
user-friendly working environment) are determinants of its 
potential universal acceptance (Figure 2).

Figure 2.Overview of the human-machine interface (HMI)
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For example, Yoo et al.,37 have recently implemented a 
RTLS based on Bluetooth Low Energy (BLE)/WiFi sensor 
beacons in a tertiary care hospital. After 3 months of use, 
117 nurses were moderately satisfied with the intervention 
and willing to re-use it. Interestingly, younger age and 
higher expertise (ER nurses) were positively associated 
with end-user satisfaction. Fisher et al.,35 who observed 
23 US hospitals that had implemented RTLS for 3 years, 
highlight the need for usability optimization but explain that 
a simultaneous deployment of changes in the organizational 
culture of healthcare settings is also required to overcome 
operational drawbacks. Gholamhosseini et al.36 provide 
similar feedback and propose more elaborate use of cloud 
computing and interrelated computing devices to overcome 
current limitations.

AWSs constitute an advanced checklist system sufficiently 
proven to contribute to stuff communication, patient safety 
and timeout efficiency. Their user-friendly profile and 
consistency have improved the traditional standard checklist 
measures and have significantly increased medical staff 
compliance with respect to systematic use. Vankipuram et 
al.40 have proposed to use a system of motion and location 
recordings via radio identification tags and observations 
to enhance clinical workflow analysis even further by 
continuous updates with real-world data. 

Web-based training platforms enable familiarization with 
these systems, while being a pillar for the improvement of 
staff performance and development of Risk Management 
(RM) and Quality Assurance (QA) systems.41, 42

Hands on Innovation: Pioneering Concepts in 
Medical Device Ergonomics/ HMI Interface/
Application Risk

Introduction of DAVINCI , the first RAS System, in early 
2000, has been a milestone of the field and resulted in the 
expansion of RAS indications45,46 and introduction of several 
similar systems into the market,47 which brought up debates 
on the benefit-risk profile of the approach. Benefits for the 
patient include significantly reduced hospitalization time, 
minimal scarring and fewer complications, while surgeons 
benefit from ergonomics, magnified views, improved tissue 
manipulation and instrument stability.47-50 Conversely, 
downsides include the level of surgical dexterity and 
required device-specific experience, increased operational 
and purchasing costs, lack of haptic feedback, systems’ 
size, inability to promptly switch instruments during a 
procedure47,51-53 and relatively high rates of robot-associated 
complications.54 

Taking the above into consideration, Schuler et al.55 
ask ‘‘who is the boss in RAS’’ and after reviewing a 
considerable number of related clinical trials and profiles 
of RAS, propose the use of HFE to avoid the downsides. 

Introducing new technologies into the OR fundamentally 
changes the requirements for teamwork and intraoperative 
communication, coordination and individual skills. 
Therefore, extensive training in simulation environments 
(for a more efficient management of complications), 
intraoperative real-time feedback to the surgeon (via safe 
surgery pathways), anatomical borders, and improved 
documentation mechanisms (e.g. checklists to facilitate 
the improvement of complication rates) are essential HFE-
related interventions. 

Souders et al.56 have observed 24 robotic abdominal 
sacrocolpopexy procedures for SFDs and deviations from 
optimal course of care and have found that they occurred 
every six minutes. Increased robotic surgery experience 
was associated with a decreased overall FD rate and SFD 
rates correlated negatively with surgery duration. 

Dru et al.57 studied 34 robotic-assisted radical prostatectomy 
and bilateral pelvic lymph node dissections over a 20-
week period for SFDs and showed that disruptions of 
communication, coordination and equipment, were the 
commonest and all inversely proportional to the surgeon’s 
robotic experience. 

Catchpole et al.16 provide extensive insight into RAS and 
highlight the importance of user-centered design with 
respect to workflow disruptions and communication 
failures. The authors performed a direct observation of SFDs 
in 89 RAS cases. They found a mean of 9.62 FDs per hour, 
predominantly caused by coordination, communication, 
equipment, and training deficiencies, varying with surgeon 
experience, training and surgical specialty. It was also shown 
that almost 60% of communication FDs are attributed to 
the need of repetitions since the surgeon does not stand 
next to the operating table.

With respect to environmental/organizational aspects, 
Ahmad et al.58 studied the impact of OR layout to staff 
movements. The team identified movements between 
zones related to staff, movement time and reason for 
movement and showed that the robotic system was 
significantly interfering with them as many movements 
occurred in a relatively confined area, partially due to RAS 
size and configuration. 

Traditional OR grapples with the severe bottlenecks 
discussed above on a daily basis. The IOR aims to empower 
the surgical team by reducing intraoperative hazards and 
dysfunctionalities59 (e.g. live ‘’broadcasting’’ of patient 
information, audio-visual systems of communication, 
surgical and room lights, building automation, surgical 
equipment) and enhancing manipulation of the system from 
a central command console. Kurmanm et al.2 suggest that 
transition towards IORs addresses and generates improved 
ergonomics, communication protocols and turnover times. 
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Bharathan et al.60 claim that IORs may overcome a number 
of workflow disruptions such as fatigue and disrupting 
communication since all unnecessary communications may 
be excluded according to the logic of a ‘’sterile cockpit.”

In an effort to determine the parameters of an optimal 
IOR dedicated to neurosurgery, Bernardo61 explained that 
a flexible, cable-free, wireless, versatile OR can serve as 
a simplified control interface that adds extra senses to 
the surgical team, enriching their ‘reality’ with additional 
information. The authors highlight that IORs are a cost-
effective solution for healthcare systems because, through 
the implementation of HFE, they minimize the HE potential 
by bridging the gap between surgical planning and accurate 
execution.

Nakamura et al.62 reported on an endoscopic endonasal 
approach performed in a Smart Cyber Operating Theater 
(SCOT) to treat a pituitary adenoma and argue in favor of 
OR integration as it enhances decision-making by providing 
information in real time and optimizes intraoperative data 
display, thus facilitating the actual surgical process. 

Klein et al.63 compared a traditional OR with a commercially 
available IOR aiming to investigate the impact of optimized 
ergonomics and technical aids of the latter to psychological 
and physiological stress of 10 experienced laparoscopic 
surgeons and showed that transfer of surgeons into an IOR 
resulted in a significant decrease of complaints during the 
surgical procedure.

Overall, the development of surgery and automation-
related skills, training and modification of our perception 
for teamwork and situational awareness become conditio 
sine qua non for surgical practice. Integrated surgical 
technologies pose challenges beyond the clinical skills, 
whilst, workload, if not responsibility itself, is often shifted 
to technical team-members. Therefore, although, workflow 
disruptions occur at similar rates to traditional surgery, 
IORs counterbalance their shortcomings with access to 
state-of-the-art HFE applications.64, 65 

The regulatory framework for IORs remains vague, mainly 
due to connectivity/concurrent functioning of differently 
classified MDs (e.g. patient monitors and anesthesia-
inducing devices). Nevertheless, informatics-driven 
platforms able to provide real-time, interactive guidelines 
to a surgical team are about to become an established 
reality, directly linked to HFE and expected to bring about 
a paradigm shift in surgical practice.

Usability Engineering and Risk Management from 
a regulatory Perspective

To keep up with the above-described current and future 
demands, UE must be considered throughout the life-cycle 
of an MD, i.e., from concept phase to final validation and 
then during the post-launch phase. The latest version of 

usability standard IEC 62366-1:201566 focuses on safety 
and potential use errors and significantly strengthens 
links to RM (i.e. ISO 1497167), which supports UE vis-à-vis 
decisions on the performance of summative tests (e.g. 
identification of UI with potential safety gaps). ISO 14971 
implements the initial ‘risk assessment’ characterized 
by HF/UE preliminary analyses, identifies and sets up 
‘implementing risk controls’, corresponding to UI and calls 
HF/UE to implement the findings in an effort to mitigate risk 
as reasonably as possible. Similarly, IEC 80001-1,68 specific 
to IT networks incorporating MDs, provides a background 
check for modular MD integration in clinical IT networks and 
defines the elements of risk analysis with respect to HMI.

The new European Medical Device Regulation (EU-MDR 
2017/745)69 has strengthened the correlation of usability 
with RM even further, since any change in MD design shall 
now be evaluated for its potential impact to the MD benefit/
risk ratio. This risk-oriented process integrates UE into the 
dynamic RM program, therefore, intensifies attention to 
use errors and upgrades HFs in clinical settings. Overall, 
Manufacturers70 are required to eliminate or reduce risks 
related to error use, to consider use by lay persons and 
to provide feedback from Post-Market Clinical Follow-
ups (PMCF). More than that, EU-MDR 2017/745 requires 
compliance with IEC 62366 with respect to user interfaces 
of unknown provenance (UOUP), i.e. Manufacturers are 
expected to justify any potential design change that could 
be affecting the UI (e.g. text reconfiguration in a label could 
trigger a non-UOUP status and therefore the obligation to 
implement the whole process). 

Regulation for UE is also closely related to quality 
management processes. The latest revision of ISO 1348571 
underlines both RM and UE and introduces usability 
requirements (e.g. user training to ensure safe use of 
MD) to the design and development section in 2 clauses72. 

FDA has been addressing HFE for decades and its most 
recent guidance on HFs highlights the importance of 
promoting patient safety by implementing HFE during 
the design and manufacturing of MDs. FDA’s 21 CFR 820.30 
(Design Controls)73 lays out the regulatory basis when 
applying for a 510(k) or Pre-Market Approval (PMA) and 
pinpoints that design input should include needs of the 
user and patient while performance criteria and safe use 
should be part of design verification and validation.

Van der Peijl et al.74 have provided a practical example 
of how IEC 62366 is implemented in the development of 
ventilator systems. They demonstrated it is possible to 
introduce a concrete UE process into a regular, linear product 
development process and the respective identification and 
control of use-related risks through the design for risk-
control process. 
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Conclusion
The extensive scope of the topic as well as the 
methodological complexity of HFs research has not allowed 
for a comprehensive meta-analysis of available data. 
Instead, we have chosen to present a qualitative review 
of real world evidence, which provide an insight on many 
shortcomings of patient safety and working conditions of 
surgical teams associated with the absence of HFE in ORs 
and insufficient UE processes in the design of medical 
systems. Literature evidence explains why the modern OR is 
a socio-technical milieu with cognitive traits and increased 
situational awareness needs. Therefore, implementation of 
HFE principles, namely, a shift towards efficient reporting, 
dynamic learning and familiarization with humans and 
automated systems, is a holistic re-definition and upgrade of 
clinical outcomes, productivity, safety and HMI interactions 
aiming to establish a sustainable, safe environment for both 
patients and medical staff.
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